Search (3 results, page 1 of 1)

  • × theme_ss:"Informetrie"
  • × year_i:[2010 TO 2020}
  • × theme_ss:"Informationsmittel"
  1. Teplitskiy, M.; Lu, G.; Duede, E.: Amplifying the impact of open access : Wikipedia and the diffusion of science (2017) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 3782) [ClassicSimilarity], result of:
              0.009076704 = score(doc=3782,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 3782, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3782)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    With the rise of Wikipedia as a first-stop source for scientific information, it is important to understand whether Wikipedia draws upon the research that scientists value most. Here we identify the 250 most heavily used journals in each of 26 research fields (4,721 journals, 19.4M articles) indexed by the Scopus database, and test whether topic, academic status, and accessibility make articles from these journals more or less likely to be referenced on Wikipedia. We find that a journal's academic status (impact factor) and accessibility (open access policy) both strongly increase the probability of it being referenced on Wikipedia. Controlling for field and impact factor, the odds that an open access journal is referenced on the English Wikipedia are 47% higher compared to paywall journals. These findings provide evidence is that a major consequence of open access policies is to significantly amplify the diffusion of science, through an intermediary like Wikipedia, to a broad audience.
    Type
    a
  2. Tomaszewski, R.: Citations to chemical databases in scholarly articles : to cite or not to cite? (2019) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 5471) [ClassicSimilarity], result of:
              0.00894975 = score(doc=5471,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 5471, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5471)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose Chemical databases have had a significant impact on the way scientists search for and use information. The purpose of this paper is to spark informed discussion and fuel debate on the issue of citations to chemical databases. Design/methodology/approach A citation analysis to four major chemical databases was undertaken to examine resource coverage and impact in the scientific literature. Two commercial databases (SciFinder and Reaxys) and two public databases (PubChem and ChemSpider) were analyzed using the "Cited Reference Search" in the Science Citation Index Expanded from the Web of Science (WoS) database. Citations to these databases between 2000 and 2016 (inclusive) were evaluated by document types and publication growth curves. A review of the distribution trends of chemical databases in peer-reviewed articles was conducted through a citation count analysis by country, organization, journal and WoS category. Findings In total, 862 scholarly articles containing a citation to one or more of the four databases were identified as only steadily increasing since 2000. The study determined that authors at academic institutions worldwide reference chemical databases in high-impact journals from notable publishers and mainly in the field of chemistry. Originality/value The research is a first attempt to evaluate the practice of citation to major chemical databases in the scientific literature. This paper proposes that citing chemical databases gives merit and recognition to the resources as well as credibility and validity to the scholarly communication process and also further discusses recommendations for citing and referencing databases.
    Type
    a
  3. Böll, S.K.: Informations- und bibliothekswissenschaftliche Zeitschriften in Literaturdatenbanken (2010) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 3234) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=3234,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 3234, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3234)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a

Languages