Search (177 results, page 2 of 9)

  • × theme_ss:"Informetrie"
  1. Van der Veer Martens, B.: Do citation systems represent theories of truth? (2001) 0.02
    0.021668777 = product of:
      0.043337554 = sum of:
        0.043337554 = product of:
          0.08667511 = sum of:
            0.08667511 = weight(_text_:22 in 3925) [ClassicSimilarity], result of:
              0.08667511 = score(doc=3925,freq=4.0), product of:
                0.15840882 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045236014 = queryNorm
                0.54716086 = fieldWeight in 3925, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3925)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2006 15:22:28
  2. Diodato, V.: Dictionary of bibliometrics (1994) 0.02
    0.021450995 = product of:
      0.04290199 = sum of:
        0.04290199 = product of:
          0.08580398 = sum of:
            0.08580398 = weight(_text_:22 in 5666) [ClassicSimilarity], result of:
              0.08580398 = score(doc=5666,freq=2.0), product of:
                0.15840882 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045236014 = queryNorm
                0.5416616 = fieldWeight in 5666, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=5666)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: Journal of library and information science 22(1996) no.2, S.116-117 (L.C. Smith)
  3. Bookstein, A.: Informetric distributions : I. Unified overview (1990) 0.02
    0.021450995 = product of:
      0.04290199 = sum of:
        0.04290199 = product of:
          0.08580398 = sum of:
            0.08580398 = weight(_text_:22 in 6902) [ClassicSimilarity], result of:
              0.08580398 = score(doc=6902,freq=2.0), product of:
                0.15840882 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045236014 = queryNorm
                0.5416616 = fieldWeight in 6902, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6902)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2006 18:55:29
  4. Bookstein, A.: Informetric distributions : II. Resilience to ambiguity (1990) 0.02
    0.021450995 = product of:
      0.04290199 = sum of:
        0.04290199 = product of:
          0.08580398 = sum of:
            0.08580398 = weight(_text_:22 in 4689) [ClassicSimilarity], result of:
              0.08580398 = score(doc=4689,freq=2.0), product of:
                0.15840882 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045236014 = queryNorm
                0.5416616 = fieldWeight in 4689, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4689)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2006 18:55:55
  5. Umstätter, W.: Szientometrische Verfahren (2004) 0.02
    0.020776035 = product of:
      0.04155207 = sum of:
        0.04155207 = product of:
          0.08310414 = sum of:
            0.08310414 = weight(_text_:n in 2920) [ClassicSimilarity], result of:
              0.08310414 = score(doc=2920,freq=10.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.42608297 = fieldWeight in 2920, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2920)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Die Szientometrie beschäftigt sich mit der Messbarkeit wissenschaftlicher Leistungen anhand bibliothekarisch nachweisbarer Publikationsergebnisse. Bei genauer Betrachtung ist es ihr Ziel, die Wissenszunahme der Wissenschaft zu messen. Die wissenschaftliche Produktion in Form von Publikationen wächst seit über dreihundert Jahren konstant mit ca. 3,5% pro Jahr. Das entspricht einerVerdopplungsrate von 20 Jahren, die zuerst dem Bibliothekar Fremont Rider 1948 bei Büchern auffiel und die 1963 von Derek J. de Solla Price auch für das Wachstum von Zeitschriften und Bibliografien bestätigt wurde. Die Konstanz dieser Evolution, unabhängig aller sich ereignenden Katastrophen, ist nur zum Teil verstanden, macht aber den unaufhaltsamen Fortschritt der Wissenschaft deutlich. Alle 20 Jahre wird so viel publiziert wie in allen Jahrhunderten davor. Eine etwa gleiche Zunahme verzeichnen die Wissenschaftler, die damit etwa gleich produktiv bleiben. Von ihnen allen sind damit ca. 87% unsere heutigen Zeitgenossen. Aus diesem Wachstum heraus können wir abschätzen, dass in 100.000 laufenden Zeitschriften heute etwa 10 Mio. Publikationen jährlich erscheinen, die von 10 Mio. Wissenschaftlern verfasst werden. Dabei definieren sich nur die als Wissenschaftler, die durchschnittlich eine Publikation jährlich verfassen. Die gesamte Produktion an Buchtiteln, die bisher erschien, dürfte bei etwa 100 Mio. liegen. Davon sind etwa 20 Mio. als wissenschaftlich einzustufen. Wenn folglich 87% aller Wissenschaftler noch heute leben, so betrug die Gesamtzahl der Wissenschaftler in der Welt bisher 11,5 Mio., die in ihrem Leben durchschnittlich 1,5 Bücher pro Kopf verfassten, und etwa das 10-20fache an Zeitschriftenbeiträgen leisteten. Ein Teil dieser Bücher sind allerdings Neuauflagen und Übersetzungen. Nach Lotka, A. J. ist die Produktivität der Wissenschaftler eine schiefe Verteilung von der Form A/n**2, wobei A die Zahl der Autoren mit nur einer Publikation ist und n die Publikationen pro Autor. Während Price in seinen "Networks of Scientific Papers" Vergleichswerte von n**2,5 bis n**3 angab, zeigten Untersuchungen am Science Citation Index (SCI), die auf die gesamte naturwissenschaftliche Literatur hochgerechnet wurden, eher einen Wert von n**1,7. Auf die Tatsache, dass eine Verdopplungsrate der Wissenschaftler von 20 Jahren und eine solche der Menschheit von etwa 50 Jahren dazu führt, dass eines Tages alle Menschen Wissenschaftler werden, hat Price bereits 1963 hingewiesen. Dieser Zustand müsste bei 10 Mio. Wissenschaftlern und 6 Mrd. Menschen in etwa 300 Jahren eintreten, ein nur scheinbar absurder Gedanke, wenn man bedenkt, dass man sich vor 300 Jahren auch kaum vorstellen konnte, dass alle Menschen Lesen, Schreiben und Rechnen lernen können, und dass wir uns ungebildete Menschen immer weniger leisten können.
  6. Egghe, L.: Relations between the continuous and the discrete Lotka power function (2005) 0.02
    0.019709876 = product of:
      0.03941975 = sum of:
        0.03941975 = product of:
          0.0788395 = sum of:
            0.0788395 = weight(_text_:n in 3464) [ClassicSimilarity], result of:
              0.0788395 = score(doc=3464,freq=4.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.40421778 = fieldWeight in 3464, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3464)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The discrete Lotka power function describes the number of sources (e.g., authors) with n = 1, 2, 3, ... items (e.g., publications). As in econometrics, informetrics theory requires functions of a continuous variable j, replacing the discrete variable n. Now j represents item densities instead of number of items. The continuous Lotka power function describes the density of sources with item density j. The discrete Lotka function one obtains from data, obtained empirically; the continuous Lotka function is the one needed when one wants to apply Lotkaian informetrics, i.e., to determine properties that can be derived from the (continuous) model. It is, hence, important to know the relations between the two models. We show that the exponents of the discrete Lotka function (if not too high, i.e., within limits encountered in practice) and of the continuous Lotka function are approximately the same. This is important to know in applying theoretical results (from the continuous model), derived from practical data.
  7. Milard, B.: ¬The social circles behind scientific references : relationships between citing and cited authors in chemistry publications (2014) 0.02
    0.019709876 = product of:
      0.03941975 = sum of:
        0.03941975 = product of:
          0.0788395 = sum of:
            0.0788395 = weight(_text_:n in 1539) [ClassicSimilarity], result of:
              0.0788395 = score(doc=1539,freq=4.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.40421778 = fieldWeight in 1539, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1539)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper provides a better understanding of the implications of researchers' social networks in bibliographic references. Using a set of chemistry papers and conducting interviews with their authors (n = 32), I characterize the type of relation the author has with the authors of the references contained in his/her paper (n = 3,623). I show that citation relationships do not always involve underlying personal exchanges and that unknown references are an essential component, revealing segmentations in scientific groups. The relationships implied by references are of various strengths and origins. Several inclusive social circles are then identified: co-authors, close acquaintances, colleagues, invisible colleges, peers, contactables, and strangers. I conclude that publication is a device that contributes to a relatively stable distribution among the various social circles that structure scientific sociability.
  8. Kaminer, N.; Braunstein, Y.M.: Bibliometric analysis of the impact of Internet use on scholarly productivity (1998) 0.02
    0.01858265 = product of:
      0.0371653 = sum of:
        0.0371653 = product of:
          0.0743306 = sum of:
            0.0743306 = weight(_text_:n in 1151) [ClassicSimilarity], result of:
              0.0743306 = score(doc=1151,freq=2.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.38110018 = fieldWeight in 1151, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1151)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  9. Coulter, N.; Monarch, I.; Konda, S.: Software engineering as seen through its research literature : a study in co-word analysis (1998) 0.02
    0.01858265 = product of:
      0.0371653 = sum of:
        0.0371653 = product of:
          0.0743306 = sum of:
            0.0743306 = weight(_text_:n in 2161) [ClassicSimilarity], result of:
              0.0743306 = score(doc=2161,freq=2.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.38110018 = fieldWeight in 2161, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2161)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  10. Lewison, G.: ¬The work of the Bibliometrics Research Group (City University) and associates (2005) 0.02
    0.018386567 = product of:
      0.036773134 = sum of:
        0.036773134 = product of:
          0.07354627 = sum of:
            0.07354627 = weight(_text_:22 in 4890) [ClassicSimilarity], result of:
              0.07354627 = score(doc=4890,freq=2.0), product of:
                0.15840882 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045236014 = queryNorm
                0.46428138 = fieldWeight in 4890, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4890)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    20. 1.2007 17:02:22
  11. Marx, W.; Bornmann, L.: On the problems of dealing with bibliometric data (2014) 0.02
    0.018386567 = product of:
      0.036773134 = sum of:
        0.036773134 = product of:
          0.07354627 = sum of:
            0.07354627 = weight(_text_:22 in 1239) [ClassicSimilarity], result of:
              0.07354627 = score(doc=1239,freq=2.0), product of:
                0.15840882 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045236014 = queryNorm
                0.46428138 = fieldWeight in 1239, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1239)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    18. 3.2014 19:13:22
  12. Informations- und Wissensverarbeitung in den Sozialwissenschaften : Beiträge zur Umsetzung neuer Informationstechnologien (1994) 0.02
    0.016424898 = product of:
      0.032849796 = sum of:
        0.032849796 = product of:
          0.06569959 = sum of:
            0.06569959 = weight(_text_:n in 5067) [ClassicSimilarity], result of:
              0.06569959 = score(doc=5067,freq=4.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.33684817 = fieldWeight in 5067, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5067)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Enthält u.a. die Beiträge: INGWERSEN, P.: Information science as a cognitive science; MEDER, N.: Objekt-orientierte Wissensdarstellung und -navigation; SPIESS, M.: Repräsentation unsicheren Wissens; HENRICHS, N.: Begriffswandel in Datenbanken: kontextuelle Inhaltsanalyse für Disambiguierung und ideengeschichtliche Analyse; VOGT, C. u. R. WILLE: Formale Begriffsanalyse: Darstellung und Analyse von bibliographischen Daten; RITTBERGER, M.: Online-Retrieval und Hypertext: auf dem Weg zu verknüpften Datenbanken und offenen Hypertextsystemen; SCHOPEN, M.: GRIPS-Menu: Unterstützung von Endnutzerrecherchen in Literaturdatenbanken des DIMDI; KLOSE, G. u. T. PIRLEIN: Wissensmodellierung in LILOG; DANIEL, H.-D.: Peer-review als Qualitätsfilter im wissenschaftlichen Publikationswesen
  13. Bornmann, L.; Schier, H.; Marx, W.; Daniel, H.-D.: Is interactive open access publishing able to identify high-impact submissions? : a study on the predictive validity of Atmospheric Chemistry and Physics by using percentile rank classes (2011) 0.02
    0.016424898 = product of:
      0.032849796 = sum of:
        0.032849796 = product of:
          0.06569959 = sum of:
            0.06569959 = weight(_text_:n in 4132) [ClassicSimilarity], result of:
              0.06569959 = score(doc=4132,freq=4.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.33684817 = fieldWeight in 4132, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4132)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In a comprehensive research project, we investigated the predictive validity of selection decisions and reviewers' ratings at the open access journal Atmospheric Chemistry and Physics (ACP). ACP is a high-impact journal publishing papers on the Earth's atmosphere and the underlying chemical and physical processes. Scientific journals have to deal with the following question concerning the predictive validity: Are in fact the "best" scientific works selected from the manuscripts submitted? In this study we examined whether selecting the "best" manuscripts means selecting papers that after publication show top citation performance as compared to other papers in this research area. First, we appraised the citation impact of later published manuscripts based on the percentile citedness rank classes of the population distribution (scaling in a specific subfield). Second, we analyzed the association between the decisions (n = 677 accepted or rejected, but published elsewhere manuscripts) or ratings (reviewers' ratings for n = 315 manuscripts), respectively, and the citation impact classes of the manuscripts. The results confirm the predictive validity of the ACP peer review system.
  14. Onodera, N.; Iwasawa, M.; Midorikawa, N.; Yoshikane, F.; Amano, K.; Ootani, Y.; Kodama, T.; Kiyama, Y.; Tsunoda, H.; Yamazaki, S.: ¬A method for eliminating articles by homonymous authors from the large number of articles retrieved by author search (2011) 0.02
    0.016424898 = product of:
      0.032849796 = sum of:
        0.032849796 = product of:
          0.06569959 = sum of:
            0.06569959 = weight(_text_:n in 4370) [ClassicSimilarity], result of:
              0.06569959 = score(doc=4370,freq=4.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.33684817 = fieldWeight in 4370, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4370)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  15. Onodera, N.; Yoshikane, F.: Factors affecting citation rates of research articles (2015) 0.02
    0.016424898 = product of:
      0.032849796 = sum of:
        0.032849796 = product of:
          0.06569959 = sum of:
            0.06569959 = weight(_text_:n in 1727) [ClassicSimilarity], result of:
              0.06569959 = score(doc=1727,freq=4.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.33684817 = fieldWeight in 1727, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1727)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study examines whether there are some general trends across subject fields regarding the factors affecting the number of citations of articles, focusing especially on those factors that are not directly related to the quality or content of articles (extrinsic factors). For this purpose, from 6 selected subject fields (condensed matter physics, inorganic and nuclear chemistry, electric and electronic engineering, biochemistry and molecular biology, physiology, and gastroenterology), original articles published in the same year were sampled (n?=?230-240 for each field). Then, the citation counts received by the articles in relatively long citation windows (6 and 11 years after publication) were predicted by negative binomial multiple regression (NBMR) analysis for each field. Various article features about author collaboration, cited references, visibility, authors' achievements (measured by past publications and citedness), and publishing journals were considered as the explanatory variables of NBMR. Some generality across the fields was found with regard to the selected predicting factors and the degree of significance of these predictors. The Price index was the strongest predictor of citations, and number of references was the next. The effects of number of authors and authors' achievement measures were rather weak.
  16. Leydesdorff, L.; Moya-Anegón, F. de; Guerrero-Bote, V.P.: Journal maps, interactive overlays, and the measurement of interdisciplinarity on the basis of Scopus data (1996-2012) (2015) 0.02
    0.016424898 = product of:
      0.032849796 = sum of:
        0.032849796 = product of:
          0.06569959 = sum of:
            0.06569959 = weight(_text_:n in 1814) [ClassicSimilarity], result of:
              0.06569959 = score(doc=1814,freq=4.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.33684817 = fieldWeight in 1814, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1814)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using Scopus data, we construct a global map of science based on aggregated journal-journal citations from 1996-2012 (N of journals?=?20,554). This base map enables users to overlay downloads from Scopus interactively. Using a single year (e.g., 2012), results can be compared with mappings based on the Journal Citation Reports at the Web of Science (N?=?10,936). The Scopus maps are more detailed at both the local and global levels because of their greater coverage, including, for example, the arts and humanities. The base maps can be interactively overlaid with journal distributions in sets downloaded from Scopus, for example, for the purpose of portfolio analysis. Rao-Stirling diversity can be used as a measure of interdisciplinarity in the sets under study. Maps at the global and the local level, however, can be very different because of the different levels of aggregation involved. Two journals, for example, can both belong to the humanities in the global map, but participate in different specialty structures locally. The base map and interactive tools are available online (with instructions) at http://www.leydesdorff.net/scopus_ovl.
  17. Lievers, W.B.; Pilkey, A.K.: Characterizing the frequency of repeated citations : the effects of journal, subject area, and self-citation (2012) 0.02
    0.016424898 = product of:
      0.032849796 = sum of:
        0.032849796 = product of:
          0.06569959 = sum of:
            0.06569959 = weight(_text_:n in 2725) [ClassicSimilarity], result of:
              0.06569959 = score(doc=2725,freq=4.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.33684817 = fieldWeight in 2725, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2725)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Previous studies have repeatedly demonstrated that the relevance of a citing document is related to the number of times with which the source document is cited. Despite the ease with which electronic documents would permit the incorporation of this information into citation-based document search and retrieval systems, the possibilities of repeated citations remain untapped. Part of this under-utilization may be due to the fact that very little is known regarding the pattern of repeated citations in scholarly literature or how this pattern may vary as a function of journal, academic discipline or self-citation. The current research addresses these unanswered questions in order to facilitate the future incorporation of repeated citation information into document search and retrieval systems. Using data mining of electronic texts, the citation characteristics of nine different journals, covering the three different academic fields (economics, computing, and medicine & biology), were characterized. It was found that the frequency (f) with which a reference is cited N or more times within a document is consistent across the sampled journals and academic fields. Self-citation causes an increase in frequency, and this effect becomes more pronounced for large N. The objectivity, automatability, and insensitivity of repeated citations to journal and discipline, present powerful opportunities for improving citation-based document search.
  18. Leydesdorff, L.; Nerghes, A.: Co-word maps and topic modeling : a comparison using small and medium-sized corpora (N?<?1.000) (2017) 0.02
    0.016424898 = product of:
      0.032849796 = sum of:
        0.032849796 = product of:
          0.06569959 = sum of:
            0.06569959 = weight(_text_:n in 3538) [ClassicSimilarity], result of:
              0.06569959 = score(doc=3538,freq=4.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.33684817 = fieldWeight in 3538, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3538)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Induced by "big data," "topic modeling" has become an attractive alternative to mapping co-words in terms of co-occurrences and co-absences using network techniques. Does topic modeling provide an alternative for co-word mapping in research practices using moderately sized document collections? We return to the word/document matrix using first a single text with a strong argument ("The Leiden Manifesto") and then upscale to a sample of moderate size (n?=?687) to study the pros and cons of the two approaches in terms of the resulting possibilities for making semantic maps that can serve an argument. The results from co-word mapping (using two different routines) versus topic modeling are significantly uncorrelated. Whereas components in the co-word maps can easily be designated, the topic models provide sets of words that are very differently organized. In these samples, the topic models seem to reveal similarities other than semantic ones (e.g., linguistic ones). In other words, topic modeling does not replace co-word mapping in small and medium-sized sets; but the paper leaves open the possibility that topic modeling would work well for the semantic mapping of large sets.
  19. Mutz, R.; Wolbring, T.; Daniel, H.-D.: ¬The effect of the "very important paper" (VIP) designation in Angewandte Chemie International Edition on citation impact : a propensity score matching analysis (2017) 0.02
    0.016424898 = product of:
      0.032849796 = sum of:
        0.032849796 = product of:
          0.06569959 = sum of:
            0.06569959 = weight(_text_:n in 3792) [ClassicSimilarity], result of:
              0.06569959 = score(doc=3792,freq=4.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.33684817 = fieldWeight in 3792, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3792)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Scientific journals publish an increasing number of articles every year. To steer readers' attention to the most important papers, journals use several techniques (e.g., lead paper). Angewandte Chemie International Edition (AC), a leading international journal in chemistry, signals high-quality papers through designating them as a "very important paper" (VIP). This study aims to investigate the citation impact of Communications in AC receiving the special feature VIP, both cumulated and over time. Using propensity score matching, treatment group (VIP) and control group (non-VIP) were balanced for 14 covariates to estimate the unconfounded "average treatment effect on the treated" for the VIP designation. Out of N = 3,011 Communications published in 2007 and 2008, N = 207 received the special feature VIP. For each Communication, data were collected from AC (e.g., referees' ratings) and from the databases Chemical Abstracts (e.g., sections) and the Web of Science (e.g., citations). The estimated unconfounded average treatment effect on the treated (that is, Communications designated as a VIP) was statistically significant and amounted to 19.83 citations. In addition, the special feature VIP fostered the cumulated annual citation growth. For instance, the time until a Communication reached its maximum annual number of citations, was reduced.
  20. Kudlow, P.; Dziadyk, D.B.; Rutledge, A.; Shachak, A.; Eysenbach, G.: ¬The citation advantage of promoted articles in a cross-publisher distribution platform : a 12-month randomized controlled trial (2020) 0.02
    0.016424898 = product of:
      0.032849796 = sum of:
        0.032849796 = product of:
          0.06569959 = sum of:
            0.06569959 = weight(_text_:n in 5969) [ClassicSimilarity], result of:
              0.06569959 = score(doc=5969,freq=4.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.33684817 = fieldWeight in 5969, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5969)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    There is currently a paucity of evidence-based strategies that have been shown to increase citations of peer-reviewed articles following their publication. We conducted a 12-month randomized controlled trial to examine whether the promotion of article links in an online cross-publisher distribution platform (TrendMD) affects citations. In all, 3,200 articles published in 64 peer-reviewed journals across eight subject areas were block randomized at the subject level to either the TrendMD group (n = 1,600) or the control group (n = 1,600) of the study. Our primary outcome compares the mean citations of articles randomized to TrendMD versus control after 12 months. Articles randomized to TrendMD showed a 50% increase in mean citations relative to control at 12 months. The difference in mean citations at 12 months for articles randomized to TrendMD versus control was 5.06, 95% confidence interval [2.87, 7.25], was statistically significant (p?<?.001) and found in three of eight subject areas. At 6 months following publication, articles randomized to TrendMD showed a smaller, yet statistically significant (p = .005), 21% increase in mean citations, relative to control. To our knowledge, this is the first randomized controlled trial to demonstrate how an intervention can be used to increase citations of peer-reviewed articles after they have been published.

Authors

Years

Languages

  • e 164
  • d 11
  • m 1
  • ro 1
  • More… Less…

Types

  • a 173
  • m 3
  • s 2
  • el 1
  • More… Less…