Search (3 results, page 1 of 1)

  • × theme_ss:"Computerlinguistik"
  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  1. Niemi, T.; Jämsen, J.: ¬A query language for discovering semantic associations, part II : sample queries and query evaluation (2007) 0.01
    0.008927471 = product of:
      0.017854942 = sum of:
        0.017854942 = product of:
          0.035709884 = sum of:
            0.035709884 = weight(_text_:i in 580) [ClassicSimilarity], result of:
              0.035709884 = score(doc=580,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.20836058 = fieldWeight in 580, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=580)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In our query language introduced in Part I (Journal of the American Society for Information Science and Technology. 58(2007) no.11, S.1559-1568) the user can formulate queries to find out (possibly complex) semantic relationships among entities. In this article we demonstrate the usage of our query language and discuss the new applications that it supports. We categorize several query types and give sample queries. The query types are categorized based on whether the entities specified in a query are known or unknown to the user in advance, and whether text information in documents is utilized. Natural language is used to represent the results of queries in order to facilitate correct interpretation by the user. We discuss briefly the issues related to the prototype implementation of the query language and show that an independent operation like Rho (Sheth et al., 2005; Anyanwu & Sheth, 2002, 2003), which presupposes entities of interest to be known in advance, is exceedingly inefficient in emulating the behavior of our query language. The discussion also covers potential problems, and challenges for future work.
  2. Niemi, T.; Jämsen , J.: ¬A query language for discovering semantic associations, part I : approach and formal definition of query primitives (2007) 0.01
    0.008927471 = product of:
      0.017854942 = sum of:
        0.017854942 = product of:
          0.035709884 = sum of:
            0.035709884 = weight(_text_:i in 591) [ClassicSimilarity], result of:
              0.035709884 = score(doc=591,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.20836058 = fieldWeight in 591, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=591)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  3. Symonds, M.; Bruza, P.; Zuccon, G.; Koopman, B.; Sitbon, L.; Turner, I.: Automatic query expansion : a structural linguistic perspective (2014) 0.01
    0.008927471 = product of:
      0.017854942 = sum of:
        0.017854942 = product of:
          0.035709884 = sum of:
            0.035709884 = weight(_text_:i in 1338) [ClassicSimilarity], result of:
              0.035709884 = score(doc=1338,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.20836058 = fieldWeight in 1338, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1338)
          0.5 = coord(1/2)
      0.5 = coord(1/2)