Search (13 results, page 1 of 1)

  • × type_ss:"el"
  • × theme_ss:"Computerlinguistik"
  1. Boleda, G.; Evert, S.: Multiword expressions : a pain in the neck of lexical semantics (2009) 0.02
    0.018469224 = product of:
      0.036938448 = sum of:
        0.036938448 = product of:
          0.073876895 = sum of:
            0.073876895 = weight(_text_:22 in 4888) [ClassicSimilarity], result of:
              0.073876895 = score(doc=4888,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.46428138 = fieldWeight in 4888, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4888)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    1. 3.2013 14:56:22
  2. Jha, A.: Why GPT-4 isn't all it's cracked up to be (2023) 0.01
    0.012498461 = product of:
      0.024996921 = sum of:
        0.024996921 = product of:
          0.049993843 = sum of:
            0.049993843 = weight(_text_:i in 923) [ClassicSimilarity], result of:
              0.049993843 = score(doc=923,freq=8.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.29170483 = fieldWeight in 923, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=923)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    "I still don't know what to think about GPT-4, the new large language model (LLM) from OpenAI. On the one hand it is a remarkable product that easily passes the Turing test. If you ask it questions, via the ChatGPT interface, GPT-4 can easily produce fluid sentences largely indistinguishable from those a person might write. But on the other hand, amid the exceptional levels of hype and anticipation, it's hard to know where GPT-4 and other LLMs truly fit in the larger project of making machines intelligent.
    They might appear intelligent, but LLMs are nothing of the sort. They don't understand the meanings of the words they are using, nor the concepts expressed within the sentences they create. When asked how to bring a cow back to life, earlier versions of ChatGPT, for example, which ran on a souped-up version of GPT-3, would confidently provide a list of instructions. So-called hallucinations like this happen because language models have no concept of what a "cow" is or that "death" is a non-reversible state of being. LLMs do not have minds that can think about objects in the world and how they relate to each other. All they "know" is how likely it is that some sets of words will follow other sets of words, having calculated those probabilities from their training data. To make sense of all this, I spoke with Gary Marcus, an emeritus professor of psychology and neural science at New York University, for "Babbage", our science and technology podcast. Last year, as the world was transfixed by the sudden appearance of ChatGPT, he made some fascinating predictions about GPT-4.
    People use symbols to think about the world: if I say the words "cat", "house" or "aeroplane", you know instantly what I mean. Symbols can also be used to describe the way things are behaving (running, falling, flying) or they can represent how things should behave in relation to each other (a "+" means add the numbers before and after). Symbolic AI is a way to embed this human knowledge and reasoning into computer systems. Though the idea has been around for decades, it fell by the wayside a few years ago as deep learning-buoyed by the sudden easy availability of lots of training data and cheap computing power-became more fashionable. In the near future at least, there's no doubt people will find LLMs useful. But whether they represent a critical step on the path towards AGI, or rather just an intriguing detour, remains to be seen."
  3. Lezius, W.: Morphy - Morphologie und Tagging für das Deutsche (2013) 0.01
    0.0123128155 = product of:
      0.024625631 = sum of:
        0.024625631 = product of:
          0.049251262 = sum of:
            0.049251262 = weight(_text_:22 in 1490) [ClassicSimilarity], result of:
              0.049251262 = score(doc=1490,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.30952093 = fieldWeight in 1490, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1490)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2015 9:30:24
  4. Bager, J.: ¬Die Text-KI ChatGPT schreibt Fachtexte, Prosa, Gedichte und Programmcode (2023) 0.01
    0.0123128155 = product of:
      0.024625631 = sum of:
        0.024625631 = product of:
          0.049251262 = sum of:
            0.049251262 = weight(_text_:22 in 835) [ClassicSimilarity], result of:
              0.049251262 = score(doc=835,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.30952093 = fieldWeight in 835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=835)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    29.12.2022 18:22:55
  5. Rieger, F.: Lügende Computer (2023) 0.01
    0.0123128155 = product of:
      0.024625631 = sum of:
        0.024625631 = product of:
          0.049251262 = sum of:
            0.049251262 = weight(_text_:22 in 912) [ClassicSimilarity], result of:
              0.049251262 = score(doc=912,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.30952093 = fieldWeight in 912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=912)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    16. 3.2023 19:22:55
  6. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I.: Improving language understanding by Generative Pre-Training 0.01
    0.010712966 = product of:
      0.021425933 = sum of:
        0.021425933 = product of:
          0.042851865 = sum of:
            0.042851865 = weight(_text_:i in 870) [ClassicSimilarity], result of:
              0.042851865 = score(doc=870,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.25003272 = fieldWeight in 870, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.046875 = fieldNorm(doc=870)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  7. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amode, D.; Sutskever, I.: Language models are unsupervised multitask learners 0.01
    0.010712966 = product of:
      0.021425933 = sum of:
        0.021425933 = product of:
          0.042851865 = sum of:
            0.042851865 = weight(_text_:i in 871) [ClassicSimilarity], result of:
              0.042851865 = score(doc=871,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.25003272 = fieldWeight in 871, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.046875 = fieldNorm(doc=871)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  8. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I.: Attention Is all you need (2017) 0.01
    0.010712966 = product of:
      0.021425933 = sum of:
        0.021425933 = product of:
          0.042851865 = sum of:
            0.042851865 = weight(_text_:i in 970) [ClassicSimilarity], result of:
              0.042851865 = score(doc=970,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.25003272 = fieldWeight in 970, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.046875 = fieldNorm(doc=970)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  9. Zhai, X.: ChatGPT user experience: : implications for education (2022) 0.01
    0.008927471 = product of:
      0.017854942 = sum of:
        0.017854942 = product of:
          0.035709884 = sum of:
            0.035709884 = weight(_text_:i in 849) [ClassicSimilarity], result of:
              0.035709884 = score(doc=849,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.20836058 = fieldWeight in 849, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=849)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    ChatGPT, a general-purpose conversation chatbot released on November 30, 2022, by OpenAI, is expected to impact every aspect of society. However, the potential impacts of this NLP tool on education remain unknown. Such impact can be enormous as the capacity of ChatGPT may drive changes to educational learning goals, learning activities, and assessment and evaluation practices. This study was conducted by piloting ChatGPT to write an academic paper, titled Artificial Intelligence for Education (see Appendix A). The piloting result suggests that ChatGPT is able to help researchers write a paper that is coherent, (partially) accurate, informative, and systematic. The writing is extremely efficient (2-3 hours) and involves very limited professional knowledge from the author. Drawing upon the user experience, I reflect on the potential impacts of ChatGPT, as well as similar AI tools, on education. The paper concludes by suggesting adjusting learning goals-students should be able to use AI tools to conduct subject-domain tasks and education should focus on improving students' creativity and critical thinking rather than general skills. To accomplish the learning goals, researchers should design AI-involved learning tasks to engage students in solving real-world problems. ChatGPT also raises concerns that students may outsource assessment tasks. This paper concludes that new formats of assessments are needed to focus on creativity and critical thinking that AI cannot substitute.
  10. Spitkovsky, V.; Norvig, P.: From words to concepts and back : dictionaries for linking text, entities and ideas (2012) 0.01
    0.0071419775 = product of:
      0.014283955 = sum of:
        0.014283955 = product of:
          0.02856791 = sum of:
            0.02856791 = weight(_text_:i in 337) [ClassicSimilarity], result of:
              0.02856791 = score(doc=337,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.16668847 = fieldWeight in 337, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.03125 = fieldNorm(doc=337)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Human language is both rich and ambiguous. When we hear or read words, we resolve meanings to mental representations, for example recognizing and linking names to the intended persons, locations or organizations. Bridging words and meaning - from turning search queries into relevant results to suggesting targeted keywords for advertisers - is also Google's core competency, and important for many other tasks in information retrieval and natural language processing. We are happy to release a resource, spanning 7,560,141 concepts and 175,100,788 unique text strings, that we hope will help everyone working in these areas. How do we represent concepts? Our approach piggybacks on the unique titles of entries from an encyclopedia, which are mostly proper and common noun phrases. We consider each individual Wikipedia article as representing a concept (an entity or an idea), identified by its URL. Text strings that refer to concepts were collected using the publicly available hypertext of anchors (the text you click on in a web link) that point to each Wikipedia page, thus drawing on the vast link structure of the web. For every English article we harvested the strings associated with its incoming hyperlinks from the rest of Wikipedia, the greater web, and also anchors of parallel, non-English Wikipedia pages. Our dictionaries are cross-lingual, and any concept deemed too fine can be broadened to a desired level of generality using Wikipedia's groupings of articles into hierarchical categories. The data set contains triples, each consisting of (i) text, a short, raw natural language string; (ii) url, a related concept, represented by an English Wikipedia article's canonical location; and (iii) count, an integer indicating the number of times text has been observed connected with the concept's url. Our database thus includes weights that measure degrees of association. For example, the top two entries for football indicate that it is an ambiguous term, which is almost twice as likely to refer to what we in the US call soccer. Vgl. auch: Spitkovsky, V.I., A.X. Chang: A cross-lingual dictionary for english Wikipedia concepts. In: http://nlp.stanford.edu/pubs/crosswikis.pdf.
  11. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D.M.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever, I.; Amodei, D.: Language models are few-shot learners (2020) 0.01
    0.0071419775 = product of:
      0.014283955 = sum of:
        0.014283955 = product of:
          0.02856791 = sum of:
            0.02856791 = weight(_text_:i in 872) [ClassicSimilarity], result of:
              0.02856791 = score(doc=872,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.16668847 = fieldWeight in 872, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.03125 = fieldNorm(doc=872)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  12. Nagy T., I.: Detecting multiword expressions and named entities in natural language texts (2014) 0.01
    0.0062492304 = product of:
      0.012498461 = sum of:
        0.012498461 = product of:
          0.024996921 = sum of:
            0.024996921 = weight(_text_:i in 1536) [ClassicSimilarity], result of:
              0.024996921 = score(doc=1536,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.14585242 = fieldWeight in 1536, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1536)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  13. Rötzer, F.: KI-Programm besser als Menschen im Verständnis natürlicher Sprache (2018) 0.01
    0.0061564078 = product of:
      0.0123128155 = sum of:
        0.0123128155 = product of:
          0.024625631 = sum of:
            0.024625631 = weight(_text_:22 in 4217) [ClassicSimilarity], result of:
              0.024625631 = score(doc=4217,freq=2.0), product of:
                0.15912095 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045439374 = queryNorm
                0.15476047 = fieldWeight in 4217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4217)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2018 11:32:44