Search (2 results, page 1 of 1)

  • × author_ss:"Bai, W."
  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  1. Jiang, Y.; Bai, W.; Zhang, X.; Hu, J.: Wikipedia-based information content and semantic similarity computation (2017) 0.00
    0.0026742492 = product of:
      0.0053484985 = sum of:
        0.0053484985 = product of:
          0.010696997 = sum of:
            0.010696997 = weight(_text_:a in 2877) [ClassicSimilarity], result of:
              0.010696997 = score(doc=2877,freq=20.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20142901 = fieldWeight in 2877, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2877)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Information Content (IC) of a concept is a fundamental dimension in computational linguistics. It enables a better understanding of concept's semantics. In the past, several approaches to compute IC of a concept have been proposed. However, there are some limitations such as the facts of relying on corpora availability, manual tagging, or predefined ontologies and fitting non-dynamic domains in the existing methods. Wikipedia provides a very large domain-independent encyclopedic repository and semantic network for computing IC of concepts with more coverage than usual ontologies. In this paper, we propose some novel methods to IC computation of a concept to solve the shortcomings of existing approaches. The presented methods focus on the IC computation of a concept (i.e., Wikipedia category) drawn from the Wikipedia category structure. We propose several new IC-based measures to compute the semantic similarity between concepts. The evaluation, based on several widely used benchmarks and a benchmark developed in ourselves, sustains the intuitions with respect to human judgments. Overall, some methods proposed in this paper have a good human correlation and constitute some effective ways of determining IC values for concepts and semantic similarity between concepts.
    Type
    a
  2. Qu, R.; Fang, Y.; Bai, W.; Jiang, Y.: Computing semantic similarity based on novel models of semantic representation using Wikipedia (2018) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 5052) [ClassicSimilarity], result of:
              0.008285859 = score(doc=5052,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 5052, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5052)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Computing Semantic Similarity (SS) between concepts is one of the most critical issues in many domains such as Natural Language Processing and Artificial Intelligence. Over the years, several SS measurement methods have been proposed by exploiting different knowledge resources. Wikipedia provides a large domain-independent encyclopedic repository and a semantic network for computing SS between concepts. Traditional feature-based measures rely on linear combinations of different properties with two main limitations, the insufficient information and the loss of semantic information. In this paper, we propose several hybrid SS measurement approaches by using the Information Content (IC) and features of concepts, which avoid the limitations introduced above. Considering integrating discrete properties into one component, we present two models of semantic representation, called CORM and CARM. Then, we compute SS based on these models and take the IC of categories as a supplement of SS measurement. The evaluation, based on several widely used benchmarks and a benchmark developed by ourselves, sustains the intuitions with respect to human judgments. In summary, our approaches are more efficient in determining SS between concepts and have a better human correlation than previous methods such as Word2Vec and NASARI.
    Type
    a