Search (15 results, page 1 of 1)

  • × author_ss:"Bornmann, L."
  • × author_ss:"Leydesdorff, L."
  1. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.02
    0.023258494 = product of:
      0.04651699 = sum of:
        0.04651699 = sum of:
          0.009076704 = weight(_text_:a in 4681) [ClassicSimilarity], result of:
            0.009076704 = score(doc=4681,freq=10.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.1709182 = fieldWeight in 4681, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=4681)
          0.037440285 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
            0.037440285 = score(doc=4681,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 4681, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4681)
      0.5 = coord(1/2)
    
    Abstract
    A recent publication in Nature reports that public R&D funding is only weakly correlated with the citation impact of a nation's articles as measured by the field-weighted citation index (FWCI; defined by Scopus). On the basis of the supplementary data, we up-scaled the design using Web of Science data for the decade 2003-2013 and OECD funding data for the corresponding decade assuming a 2-year delay (2001-2011). Using negative binomial regression analysis, we found very small coefficients, but the effects of international collaboration are positive and statistically significant, whereas the effects of government funding are negative, an order of magnitude smaller, and statistically nonsignificant (in two of three analyses). In other words, international collaboration improves the impact of research articles, whereas more government funding tends to have a small adverse effect when comparing OECD countries.
    Date
    8. 1.2019 18:22:45
    Type
    a
  2. Leydesdorff, L.; Bornmann, L.: How fractional counting of citations affects the impact factor : normalization in terms of differences in citation potentials among fields of science (2011) 0.02
    0.01938208 = product of:
      0.03876416 = sum of:
        0.03876416 = sum of:
          0.0075639198 = weight(_text_:a in 4186) [ClassicSimilarity], result of:
            0.0075639198 = score(doc=4186,freq=10.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.14243183 = fieldWeight in 4186, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4186)
          0.03120024 = weight(_text_:22 in 4186) [ClassicSimilarity], result of:
            0.03120024 = score(doc=4186,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 4186, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4186)
      0.5 = coord(1/2)
    
    Abstract
    The Impact Factors (IFs) of the Institute for Scientific Information suffer from a number of drawbacks, among them the statistics-Why should one use the mean and not the median?-and the incomparability among fields of science because of systematic differences in citation behavior among fields. Can these drawbacks be counteracted by fractionally counting citation weights instead of using whole numbers in the numerators? (a) Fractional citation counts are normalized in terms of the citing sources and thus would take into account differences in citation behavior among fields of science. (b) Differences in the resulting distributions can be tested statistically for their significance at different levels of aggregation. (c) Fractional counting can be generalized to any document set including journals or groups of journals, and thus the significance of differences among both small and large sets can be tested. A list of fractionally counted IFs for 2008 is available online at http:www.leydesdorff.net/weighted_if/weighted_if.xls The between-group variance among the 13 fields of science identified in the U.S. Science and Engineering Indicators is no longer statistically significant after this normalization. Although citation behavior differs largely between disciplines, the reflection of these differences in fractionally counted citation distributions can not be used as a reliable instrument for the classification.
    Date
    22. 1.2011 12:51:07
    Type
    a
  3. Bornmann, L.; Leydesdorff, L.: Statistical tests and research assessments : a comment on Schneider (2012) (2013) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 752) [ClassicSimilarity], result of:
              0.011481222 = score(doc=752,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 752, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=752)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  4. Bornmann, L.; Leydesdorff, L.: Which cities produce more excellent papers than can be expected? : a new mapping approach, using Google Maps, based on statistical significance testing (2011) 0.00
    0.0026849252 = product of:
      0.0053698504 = sum of:
        0.0053698504 = product of:
          0.010739701 = sum of:
            0.010739701 = weight(_text_:a in 4767) [ClassicSimilarity], result of:
              0.010739701 = score(doc=4767,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20223314 = fieldWeight in 4767, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4767)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The methods presented in this paper allow for a statistical analysis revealing centers of excellence around the world using programs that are freely available. Based on Web of Science data (a fee-based database), field-specific excellence can be identified in cities where highly cited papers were published more frequently than can be expected. Compared to the mapping approaches published hitherto, our approach is more analytically oriented by allowing the assessment of an observed number of excellent papers for a city against the expected number. Top performers in output are cities in which authors are located who publish a statistically significant higher number of highly cited papers than can be expected for these cities. As sample data for physics, chemistry, and psychology show, these cities do not necessarily have a high output of highly cited papers.
    Type
    a
  5. Marx, W.; Bornmann, L.; Barth, A.; Leydesdorff, L.: Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS) (2014) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 1238) [ClassicSimilarity], result of:
              0.008202582 = score(doc=1238,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 1238, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1238)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We introduce the quantitative method named "Reference Publication Year Spectroscopy" (RPYS). With this method one can determine the historical roots of research fields and quantify their impact on current research. RPYS is based on the analysis of the frequency with which references are cited in the publications of a specific research field in terms of the publication years of these cited references. The origins show up in the form of more or less pronounced peaks mostly caused by individual publications that are cited particularly frequently. In this study, we use research on graphene and on solar cells to illustrate how RPYS functions, and what results it can deliver.
    Type
    a
  6. Leydesdorff, L.; Wagner, C,; Bornmann, L.: Replicability and the public/private divide (2016) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 3023) [ClassicSimilarity], result of:
              0.008118451 = score(doc=3023,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 3023, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3023)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  7. Leydesdorff, L.; Bornmann, L.; Mingers, J.: Statistical significance and effect sizes of differences among research universities at the level of nations and worldwide based on the Leiden rankings (2019) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 5225) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=5225,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 5225, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5225)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Leiden Rankings can be used for grouping research universities by considering universities which are not statistically significantly different as homogeneous sets. The groups and intergroup relations can be analyzed and visualized using tools from network analysis. Using the so-called "excellence indicator" PPtop-10%-the proportion of the top-10% most-highly-cited papers assigned to a university-we pursue a classification using (a) overlapping stability intervals, (b) statistical-significance tests, and (c) effect sizes of differences among 902 universities in 54 countries; we focus on the UK, Germany, Brazil, and the USA as national examples. Although the groupings remain largely the same using different statistical significance levels or overlapping stability intervals, these classifications are uncorrelated with those based on effect sizes. Effect sizes for the differences between universities are small (w < .2). The more detailed analysis of universities at the country level suggests that distinctions beyond three or perhaps four groups of universities (high, middle, low) may not be meaningful. Given similar institutional incentives, isomorphism within each eco-system of universities should not be underestimated. Our results suggest that networks based on overlapping stability intervals can provide a first impression of the relevant groupings among universities. However, the clusters are not well-defined divisions between groups of universities.
    Type
    a
  8. Leydesdorff, L.; Bornmann, L.; Mutz, R.; Opthof, T.: Turning the tables on citation analysis one more time : principles for comparing sets of documents (2011) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 4485) [ClassicSimilarity], result of:
              0.007030784 = score(doc=4485,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 4485, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4485)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We submit newly developed citation impact indicators based not on arithmetic averages of citations but on percentile ranks. Citation distributions are-as a rule-highly skewed and should not be arithmetically averaged. With percentile ranks, the citation score of each paper is rated in terms of its percentile in the citation distribution. The percentile ranks approach allows for the formulation of a more abstract indicator scheme that can be used to organize and/or schematize different impact indicators according to three degrees of freedom: the selection of the reference sets, the evaluation criteria, and the choice of whether or not to define the publication sets as independent. Bibliometric data of seven principal investigators (PIs) of the Academic Medical Center of the University of Amsterdam are used as an exemplary dataset. We demonstrate that the proposed family indicators [R(6), R(100), R(6, k), R(100, k)] are an improvement on averages-based indicators because one can account for the shape of the distributions of citations over papers.
    Type
    a
  9. Leydesdorff, L.; Bornmann, L.: Mapping (USPTO) patent data using overlays to Google Maps (2012) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 288) [ClassicSimilarity], result of:
              0.007030784 = score(doc=288,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 288, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=288)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A technique is developed using patent information available online (at the U.S. Patent and Trademark Office) for the generation of Google Maps. The overlays indicate both the quantity and the quality of patents at the city level. This information is relevant for research questions in technology analysis, innovation studies, and evolutionary economics, as well as economic geography. The resulting maps can also be relevant for technological innovation policies and research and development management, because the U.S. market can be considered the leading market for patenting and patent competition. In addition to the maps, the routines provide quantitative data about the patents for statistical analysis. The cities on the map are colored according to the results of significance tests. The overlays are explored for the Netherlands as a "national system of innovations" and further elaborated in two cases of emerging technologies: ribonucleic acid interference (RNAi) and nanotechnology.
    Type
    a
  10. Leydesdorff, L.; Radicchi, F.; Bornmann, L.; Castellano, C.; Nooy, W. de: Field-normalized impact factors (IFs) : a comparison of rescaling and fractionally counted IFs (2013) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 1108) [ClassicSimilarity], result of:
              0.007030784 = score(doc=1108,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 1108, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1108)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Two methods for comparing impact factors and citation rates across fields of science are tested against each other using citations to the 3,705 journals in the Science Citation Index 2010 (CD-Rom version of SCI) and the 13 field categories used for the Science and Engineering Indicators of the U.S. National Science Board. We compare (a) normalization by counting citations in proportion to the length of the reference list (1/N of references) with (b) rescaling by dividing citation scores by the arithmetic mean of the citation rate of the cluster. Rescaling is analytical and therefore independent of the quality of the attribution to the sets, whereas fractional counting provides an empirical strategy for normalization among sets (by evaluating the between-group variance). By the fairness test of Radicchi and Castellano (), rescaling outperforms fractional counting of citations for reasons that we consider.
    Type
    a
  11. Leydesdorff, L.; Zhou, P.; Bornmann, L.: How can journal impact factors be normalized across fields of science? : An assessment in terms of percentile ranks and fractional counts (2013) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 532) [ClassicSimilarity], result of:
              0.006765375 = score(doc=532,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 532, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=532)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using the CD-ROM version of the Science Citation Index 2010 (N = 3,705 journals), we study the (combined) effects of (a) fractional counting on the impact factor (IF) and (b) transformation of the skewed citation distributions into a distribution of 100 percentiles and six percentile rank classes (top-1%, top-5%, etc.). Do these approaches lead to field-normalized impact measures for journals? In addition to the 2-year IF (IF2), we consider the 5-year IF (IF5), the respective numerators of these IFs, and the number of Total Cites, counted both as integers and fractionally. These various indicators are tested against the hypothesis that the classification of journals into 11 broad fields by PatentBoard/NSF (National Science Foundation) provides statistically significant between-field effects. Using fractional counting the between-field variance is reduced by 91.7% in the case of IF5, and by 79.2% in the case of IF2. However, the differences in citation counts are not significantly affected by fractional counting. These results accord with previous studies, but the longer citation window of a fractionally counted IF5 can lead to significant improvement in the normalization across fields.
    Type
    a
  12. Bornmann, L.; Wagner, C.; Leydesdorff, L.: BRICS countries and scientific excellence : a bibliometric analysis of most frequently cited papers (2015) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 2047) [ClassicSimilarity], result of:
              0.006765375 = score(doc=2047,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 2047, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2047)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The BRICS countries (Brazil, Russia, India, China, and South Africa) are notable for their increasing participation in science and technology. The governments of these countries have been boosting their investments in research and development to become part of the group of nations doing research at a world-class level. This study investigates the development of the BRICS countries in the domain of top-cited papers (top 10% and 1% most frequently cited papers) between 1990 and 2010. To assess the extent to which these countries have become important players at the top level, we compare the BRICS countries with the top-performing countries worldwide. As the analyses of the (annual) growth rates show, with the exception of Russia, the BRICS countries have increased their output in terms of most frequently cited papers at a higher rate than the top-cited countries worldwide. By way of additional analysis, we generate coauthorship networks among authors of highly cited papers for 4 time points to view changes in BRICS participation (1995, 2000, 2005, and 2010). Here, the results show that all BRICS countries succeeded in becoming part of this network, whereby the Chinese collaboration activities focus on the US.
    Type
    a
  13. Bauer, J.; Leydesdorff, L.; Bornmann, L.: Highly cited papers in Library and Information Science (LIS) : authors, institutions, and network structures (2016) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 3231) [ClassicSimilarity], result of:
              0.006765375 = score(doc=3231,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 3231, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3231)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    As a follow-up to the highly cited authors list published by Thomson Reuters in June 2014, we analyzed the top 1% most frequently cited papers published between 2002 and 2012 included in the Web of Science (WoS) subject category "Information Science & Library Science." In all, 798 authors contributed to 305 top 1% publications; these authors were employed at 275 institutions. The authors at Harvard University contributed the largest number of papers, when the addresses are whole-number counted. However, Leiden University leads the ranking if fractional counting is used. Twenty-three of the 798 authors were also listed as most highly cited authors by Thomson Reuters in June 2014 (http://highlycited.com/). Twelve of these 23 authors were involved in publishing 4 or more of the 305 papers under study. Analysis of coauthorship relations among the 798 highly cited scientists shows that coauthorships are based on common interests in a specific topic. Three topics were important between 2002 and 2012: (a) collection and exploitation of information in clinical practices; (b) use of the Internet in public communication and commerce; and (c) scientometrics.
    Type
    a
  14. Leydesdorff, L.; Bornmann, L.: Integrated impact indicators compared with impact factors : an alternative research design with policy implications (2011) 0.00
    0.0014647468 = product of:
      0.0029294936 = sum of:
        0.0029294936 = product of:
          0.005858987 = sum of:
            0.005858987 = weight(_text_:a in 4919) [ClassicSimilarity], result of:
              0.005858987 = score(doc=4919,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11032722 = fieldWeight in 4919, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4919)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In bibliometrics, the association of "impact" with central-tendency statistics is mistaken. Impacts add up, and citation curves therefore should be integrated instead of averaged. For example, the journals MIS Quarterly and Journal of the American Society for Information Science and Technology differ by a factor of 2 in terms of their respective impact factors (IF), but the journal with the lower IF has the higher impact. Using percentile ranks (e.g., top-1%, top-10%, etc.), an Integrated Impact Indicator (I3) can be based on integration of the citation curves, but after normalization of the citation curves to the same scale. The results across document sets can be compared as percentages of the total impact of a reference set. Total number of citations, however, should not be used instead because the shape of the citation curves is then not appreciated. I3 can be applied to any document set and any citation window. The results of the integration (summation) are fully decomposable in terms of journals or institutional units such as nations, universities, and so on because percentile ranks are determined at the paper level. In this study, we first compare I3 with IFs for the journals in two Institute for Scientific Information subject categories ("Information Science & Library Science" and "Multidisciplinary Sciences"). The library and information science set is additionally decomposed in terms of nations. Policy implications of this possible paradigm shift in citation impact analysis are specified.
    Type
    a
  15. Leydesdorff, L.; Bornmann, L.: ¬The operationalization of "fields" as WoS subject categories (WCs) in evaluative bibliometrics : the cases of "library and information science" and "science & technology studies" (2016) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 2779) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=2779,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 2779, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2779)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a