Search (4 results, page 1 of 1)

  • × author_ss:"Bornmann, L."
  • × theme_ss:"Citation indexing"
  1. Bornmann, L.; Daniel, H.-D.: Multiple publication on a single research study: does it pay? : The influence of number of research articles on total citation counts in biomedicine (2007) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 444) [ClassicSimilarity], result of:
              0.00894975 = score(doc=444,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 444, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=444)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Scientists may seek to report a single definable body of research in more than one publication, that is, in repeated reports of the same work or in fractional reports, in order to disseminate their research as widely as possible in the scientific community. Up to now, however, it has not been examined whether this strategy of "multiple publication" in fact leads to greater reception of the research. In the present study, we investigate the influence of number of articles reporting the results of a single study on reception in the scientific community (total citation counts of an article on a single study). Our data set consists of 96 applicants for a research fellowship from the Boehringer Ingelheim Fonds (BIF), an international foundation for the promotion of basic research in biomedicine. The applicants reported to us all articles that they had published within the framework of their doctoral research projects. On this single project, the applicants had published from 1 to 16 articles (M = 4; Mdn = 3). The results of a regression model with an interaction term show that the practice of multiple publication of research study results does in fact lead to greater reception of the research (higher total citation counts) in the scientific community. However, reception is dependent upon length of article: the longer the article, the more total citation counts increase with the number of articles. Thus, it pays for scientists to practice multiple publication of study results in the form of sizable reports.
    Type
    a
  2. Bornmann, L.; Daniel, H.D.: What do citation counts measure? : a review of studies on citing behavior (2008) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 1729) [ClassicSimilarity], result of:
              0.00894975 = score(doc=1729,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 1729, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1729)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The purpose of this paper is to present a narrative review of studies on the citing behavior of scientists, covering mainly research published in the last 15 years. Based on the results of these studies, the paper seeks to answer the question of the extent to which scientists are motivated to cite a publication not only to acknowledge intellectual and cognitive influences of scientific peers, but also for other, possibly non-scientific, reasons. Design/methodology/approach - The review covers research published from the early 1960s up to mid-2005 (approximately 30 studies on citing behavior-reporting results in about 40 publications). Findings - The general tendency of the results of the empirical studies makes it clear that citing behavior is not motivated solely by the wish to acknowledge intellectual and cognitive influences of colleague scientists, since the individual studies reveal also other, in part non-scientific, factors that play a part in the decision to cite. However, the results of the studies must also be deemed scarcely reliable: the studies vary widely in design, and their results can hardly be replicated. Many of the studies have methodological weaknesses. Furthermore, there is evidence that the different motivations of citers are "not so different or 'randomly given' to such an extent that the phenomenon of citation would lose its role as a reliable measure of impact". Originality/value - Given the increasing importance of evaluative bibliometrics in the world of scholarship, the question "What do citation counts measure?" is a particularly relevant and topical issue.
    Type
    a
  3. Bornmann, L.; Daniel, H.-D.: Selecting manuscripts for a high-impact journal through peer review : a citation analysis of communications that were accepted by Angewandte Chemie International Edition, or rejected but published elsewhere (2008) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 2381) [ClassicSimilarity], result of:
              0.007654148 = score(doc=2381,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 2381, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2381)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    All journals that use peer review have to deal with the following question: Does the peer review system fulfill its declared objective to select the best scientific work? We investigated the journal peer-review process at Angewandte Chemie International Edition (AC-IE), one of the prime chemistry journals worldwide, and conducted a citation analysis for Communications that were accepted by the journal (n = 878) or rejected but published elsewhere (n = 959). The results of negative binomial-regression models show that holding all other model variables constant, being accepted by AC-IE increases the expected number of citations by up to 50%. A comparison of average citation counts (with 95% confidence intervals) of accepted and rejected (but published elsewhere) Communications with international scientific reference standards was undertaken. As reference standards, (a) mean citation counts for the journal set provided by Thomson Reuters corresponding to the field chemistry and (b) specific reference standards that refer to the subject areas of Chemical Abstracts were used. When compared to reference standards, the mean impact on chemical research is for the most part far above average not only for accepted Communications but also for rejected (but published elsewhere) Communications. However, average and below-average scientific impact is to be expected significantly less frequently for accepted Communications than for rejected Communications. All in all, the results of this study confirm that peer review at AC-IE is able to select the best scientific work with the highest impact on chemical research.
    Content
    Vgl. auch: Erratum Re: Selecting manuscripts for a high-impact journal through peer review: A citation analysis of communications that were accepted by Agewandte Chemie International Edition, or rejected but published elsewhere. In: Journal of the American Society for Information Science and Technology 59(2008) no.12, S.2037-2038.
    Type
    a
  4. Marx, W.; Bornmann, L.; Cardona, M.: Reference standards and reference multipliers for the comparison of the citation impact of papers published in different time periods (2010) 0.00
    0.0014647468 = product of:
      0.0029294936 = sum of:
        0.0029294936 = product of:
          0.005858987 = sum of:
            0.005858987 = weight(_text_:a in 3998) [ClassicSimilarity], result of:
              0.005858987 = score(doc=3998,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11032722 = fieldWeight in 3998, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3998)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this study, reference standards and reference multipliers are suggested as a means to compare the citation impact of earlier research publications in physics (from the period of "Little Science" in the early 20th century) with that of contemporary papers (from the period of "Big Science," beginning around 1960). For the development of time-specific reference standards, the authors determined (a) the mean citation rates of papers in selected physics journals as well as (b) the mean citation rates of all papers in physics published in 1900 (Little Science) and in 2000 (Big Science); this was accomplished by relying on the processes of field-specific standardization in bibliometry. For the sake of developing reference multipliers with which the citation impact of earlier papers can be adjusted to the citation impact of contemporary papers, they combined the reference standards calculated for 1900 and 2000 into their ratio. The use of reference multipliers is demonstrated by means of two examples involving the time adjusted h index values for Max Planck and Albert Einstein.
    Type
    a