Search (2 results, page 1 of 1)

  • × author_ss:"Calegari, S."
  • × theme_ss:"Wissensrepräsentation"
  1. Calegari, S.; Sanchez, E.: Object-fuzzy concept network : an enrichment of ontologies in semantic information retrieval (2008) 0.00
    0.0031642143 = product of:
      0.0063284286 = sum of:
        0.0063284286 = product of:
          0.012656857 = sum of:
            0.012656857 = weight(_text_:a in 2393) [ClassicSimilarity], result of:
              0.012656857 = score(doc=2393,freq=28.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.23833402 = fieldWeight in 2393, product of:
                  5.2915025 = tf(freq=28.0), with freq of:
                    28.0 = termFreq=28.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2393)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article shows how a fuzzy ontology-based approach can improve semantic documents retrieval. After formally defining a fuzzy ontology and a fuzzy knowledge base, a special type of new fuzzy relationship called (semantic) correlation, which links the concepts or entities in a fuzzy ontology, is discussed. These correlations, first assigned by experts, are updated after querying or when a document has been inserted into a database. Moreover, in order to define a dynamic knowledge of a domain adapting itself to the context, it is shown how to handle a tradeoff between the correct definition of an object, taken in the ontology structure, and the actual meaning assigned by individuals. The notion of a fuzzy concept network is extended, incorporating database objects so that entities and documents can similarly be represented in the network. Information retrieval (IR) algorithm, using an object-fuzzy concept network (O-FCN), is introduced and described. This algorithm allows us to derive a unique path among the entities involved in the query to obtain maxima semantic associations in the knowledge domain. Finally, the study has been validated by querying a database using fuzzy recall, fuzzy precision, and coefficient variant measures in the crisp and fuzzy cases.
    Type
    a
  2. Calegari, S.; Pasi, G.: Personal ontologies : generation of user profiles based on the YAGO ontology (2013) 0.00
    0.0029294936 = product of:
      0.005858987 = sum of:
        0.005858987 = product of:
          0.011717974 = sum of:
            0.011717974 = weight(_text_:a in 2719) [ClassicSimilarity], result of:
              0.011717974 = score(doc=2719,freq=24.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22065444 = fieldWeight in 2719, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2719)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Personalized search is aimed at tailoring the search outcome to users; to this aim user profiles play an important role: the more faithfully a user profile represents the user interests and preferences, the higher is the probability to improve the search process. In the approaches proposed in the literature, user profiles are formally represented as bags of words, as vectors, or as conceptual taxonomies, generally defined based on external knowledge resources (such as the WordNet and the ODP - Open Directory Project). Ontologies have been more recently considered as a powerful expressive means for knowledge representation. The advantage offered by ontological languages is that they allow a more structured and expressive knowledge representation with respect to the above mentioned approaches. A challenging research activity consists in defining user profiles by a knowledge extraction process from an existing ontology, with the main aim of producing a semantically rich representation of the user interests. In this paper a method to automatically define a personal ontology via a knowledge extraction process from the general purpose ontology YAGO is presented; starting from a set of keywords, which are representatives of the user interests, the process is aimed to define a structured and semantically coherent representation of the user topical interests. In the paper the proposed method is described, as well as some evaluations that show its effectiveness.
    Type
    a