Search (2 results, page 1 of 1)

  • × author_ss:"Carpineto, C."
  • × theme_ss:"Retrievalalgorithmen"
  1. Carpineto, C.; Romano, G.: Information retrieval through hybrid navigation of lattice representations (1996) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 7434) [ClassicSimilarity], result of:
              0.010589487 = score(doc=7434,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 7434, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7434)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Presents a comprehensive approach to automatic organization and hybrid navigation of text databases. An organizing stage builds a particular lattice representation of the data, through text indexing followed by lattice clustering of the indexed texts. The lattice representation supports the navigation state of the system, a visual retrieval interface that combines 3 main retrieval strategies: browsing, querying, and bounding. Such a hybrid paradigm permits high flexibility in trading off information exploration and retrieval, and had good retrieval performance. Compares information retrieval using lattice-based hybrid navigation with conventional Boolean querying. Experiments conducted on 2 medium-sized bibliographic databases showed that the performance of lattice retrieval was comparable to or better than Boolean retrieval
    Type
    a
  2. Carpineto, C.; Romano, G.: Order-theoretical ranking (2000) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 4766) [ClassicSimilarity], result of:
              0.009567685 = score(doc=4766,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 4766, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4766)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Current best-match ranking (BMR) systems perform well but cannot handle word mismatch between a query and a document. The best known alternative ranking method, hierarchical clustering-based ranking (HCR), seems to be more robust than BMR with respect to this problem, but it is hampered by theoretical and practical limitations. We present an approach to document ranking that explicitly addresses the word mismatch problem by exploiting interdocument similarity information in a novel way. Document ranking is seen as a query-document transformation driven by a conceptual representation of the whole document collection, into which the query is merged. Our approach is nased on the theory of concept (or Galois) lattices, which, er argue, provides a powerful, well-founded, and conputationally-tractable framework to model the space in which documents and query are represented and to compute such a transformation. We compared information retrieval using concept lattice-based ranking (CLR) to BMR and HCR. The results showed that HCR was outperformed by CLR as well as BMR, and suggested that, of the two best methods, BMR achieved better performance than CLR on the whole document set, whereas CLR compared more favorably when only the first retrieved documents were used for evaluation. We also evaluated the three methods' specific ability to rank documents that did not match the query, in which case the speriority of CLR over BMR and HCR was apparent
    Type
    a