Search (1 results, page 1 of 1)

  • × author_ss:"Chandramouli, A."
  • × theme_ss:"Automatisches Klassifizieren"
  1. Gauch, S.; Chandramouli, A.; Ranganathan, S.: Training a hierarchical classifier using inter document relationships (2009) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 2697) [ClassicSimilarity], result of:
              0.00994303 = score(doc=2697,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 2697, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2697)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Text classifiers automatically classify documents into appropriate concepts for different applications. Most classification approaches use flat classifiers that treat each concept as independent, even when the concept space is hierarchically structured. In contrast, hierarchical text classification exploits the structural relationships between the concepts. In this article, we explore the effectiveness of hierarchical classification for a large concept hierarchy. Since the quality of the classification is dependent on the quality and quantity of the training data, we evaluate the use of documents selected from subconcepts to address the sparseness of training data for the top-level classifiers and the use of document relationships to identify the most representative training documents. By selecting training documents using structural and similarity relationships, we achieve a statistically significant improvement of 39.8% (from 54.5-76.2%) in the accuracy of the hierarchical classifier over that of the flat classifier for a large, three-level concept hierarchy.
    Type
    a