Search (52 results, page 1 of 3)

  • × author_ss:"Leydesdorff, L."
  • × year_i:[2010 TO 2020}
  1. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.02
    0.023258494 = product of:
      0.04651699 = sum of:
        0.04651699 = sum of:
          0.009076704 = weight(_text_:a in 4681) [ClassicSimilarity], result of:
            0.009076704 = score(doc=4681,freq=10.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.1709182 = fieldWeight in 4681, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=4681)
          0.037440285 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
            0.037440285 = score(doc=4681,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 4681, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4681)
      0.5 = coord(1/2)
    
    Abstract
    A recent publication in Nature reports that public R&D funding is only weakly correlated with the citation impact of a nation's articles as measured by the field-weighted citation index (FWCI; defined by Scopus). On the basis of the supplementary data, we up-scaled the design using Web of Science data for the decade 2003-2013 and OECD funding data for the corresponding decade assuming a 2-year delay (2001-2011). Using negative binomial regression analysis, we found very small coefficients, but the effects of international collaboration are positive and statistically significant, whereas the effects of government funding are negative, an order of magnitude smaller, and statistically nonsignificant (in two of three analyses). In other words, international collaboration improves the impact of research articles, whereas more government funding tends to have a small adverse effect when comparing OECD countries.
    Date
    8. 1.2019 18:22:45
    Type
    a
  2. Leydesdorff, L.; Johnson, M.W.; Ivanova, I.: Toward a calculus of redundancy : signification, codification, and anticipation in cultural evolution (2018) 0.02
    0.020948619 = product of:
      0.041897237 = sum of:
        0.041897237 = sum of:
          0.010696997 = weight(_text_:a in 4463) [ClassicSimilarity], result of:
            0.010696997 = score(doc=4463,freq=20.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.20142901 = fieldWeight in 4463, product of:
                4.472136 = tf(freq=20.0), with freq of:
                  20.0 = termFreq=20.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4463)
          0.03120024 = weight(_text_:22 in 4463) [ClassicSimilarity], result of:
            0.03120024 = score(doc=4463,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 4463, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4463)
      0.5 = coord(1/2)
    
    Abstract
    This article considers the relationships among meaning generation, selection, and the dynamics of discourse from a variety of perspectives ranging from information theory and biology to sociology. Following Husserl's idea of a horizon of meanings in intersubjective communication, we propose a way in which, using Shannon's equations, the generation and selection of meanings from a horizon of possibilities can be considered probabilistically. The information-theoretical dynamics we articulate considers a process of meaning generation within cultural evolution: information is imbued with meaning, and through this process, the number of options for the selection of meaning in discourse proliferates. The redundancy of possible meanings contributes to a codification of expectations within the discourse. Unlike hardwired DNA, the codes of nonbiological systems can coevolve with the variations. Spanning horizons of meaning, the codes structure the communications as selection environments that shape discourses. Discursive knowledge can be considered as meta-coded communication that enables us to translate among differently coded communications. The dynamics of discursive knowledge production can thus infuse the historical dynamics with a cultural evolution by adding options, that is, by increasing redundancy. A calculus of redundancy is presented as an indicator whereby these dynamics of discourse and meaning may be explored empirically.
    Date
    29. 9.2018 11:22:09
    Type
    a
  3. Hellsten, I.; Leydesdorff, L.: ¬The construction of interdisciplinarity : the development of the knowledge base and programmatic focus of the journal Climatic Change, 1977-2013 (2016) 0.02
    0.01974305 = product of:
      0.0394861 = sum of:
        0.0394861 = sum of:
          0.008285859 = weight(_text_:a in 3089) [ClassicSimilarity], result of:
            0.008285859 = score(doc=3089,freq=12.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.15602624 = fieldWeight in 3089, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3089)
          0.03120024 = weight(_text_:22 in 3089) [ClassicSimilarity], result of:
            0.03120024 = score(doc=3089,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 3089, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3089)
      0.5 = coord(1/2)
    
    Abstract
    Climate change as a complex physical and social issue has gained increasing attention in the natural as well as the social sciences. Climate change research has become more interdisciplinary and even transdisciplinary as a typical Mode-2 science that is also dependent on an application context for its further development. We propose to approach interdisciplinarity as a co-construction of the knowledge base in the reference patterns and the programmatic focus in the editorials in the core journal of the climate-change sciences-Climatic Change-during the period 1977-2013. First, we analyze the knowledge base of the journal and map journal-journal relations on the basis of the references in the articles. Second, we follow the development of the programmatic focus by analyzing the semantics in the editorials. We argue that interdisciplinarity is a result of the co-construction between different agendas: The selection of publications into the knowledge base of the journal, and the adjustment of the programmatic focus to the political context in the editorials. Our results show a widening of the knowledge base from referencing the multidisciplinary journals Nature and Science to citing journals from specialist fields. The programmatic focus follows policy-oriented issues and incorporates public metaphors.
    Date
    24. 8.2016 17:53:22
    Type
    a
  4. Leydesdorff, L.; Bornmann, L.: How fractional counting of citations affects the impact factor : normalization in terms of differences in citation potentials among fields of science (2011) 0.02
    0.01938208 = product of:
      0.03876416 = sum of:
        0.03876416 = sum of:
          0.0075639198 = weight(_text_:a in 4186) [ClassicSimilarity], result of:
            0.0075639198 = score(doc=4186,freq=10.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.14243183 = fieldWeight in 4186, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4186)
          0.03120024 = weight(_text_:22 in 4186) [ClassicSimilarity], result of:
            0.03120024 = score(doc=4186,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 4186, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4186)
      0.5 = coord(1/2)
    
    Abstract
    The Impact Factors (IFs) of the Institute for Scientific Information suffer from a number of drawbacks, among them the statistics-Why should one use the mean and not the median?-and the incomparability among fields of science because of systematic differences in citation behavior among fields. Can these drawbacks be counteracted by fractionally counting citation weights instead of using whole numbers in the numerators? (a) Fractional citation counts are normalized in terms of the citing sources and thus would take into account differences in citation behavior among fields of science. (b) Differences in the resulting distributions can be tested statistically for their significance at different levels of aggregation. (c) Fractional counting can be generalized to any document set including journals or groups of journals, and thus the significance of differences among both small and large sets can be tested. A list of fractionally counted IFs for 2008 is available online at http:www.leydesdorff.net/weighted_if/weighted_if.xls The between-group variance among the 13 fields of science identified in the U.S. Science and Engineering Indicators is no longer statistically significant after this normalization. Although citation behavior differs largely between disciplines, the reflection of these differences in fractionally counted citation distributions can not be used as a reliable instrument for the classification.
    Date
    22. 1.2011 12:51:07
    Type
    a
  5. Chen, C.; Leydesdorff, L.: Patterns of connections and movements in dual-map overlays : a new method of publication portfolio analysis (2014) 0.00
    0.0029294936 = product of:
      0.005858987 = sum of:
        0.005858987 = product of:
          0.011717974 = sum of:
            0.011717974 = weight(_text_:a in 1200) [ClassicSimilarity], result of:
              0.011717974 = score(doc=1200,freq=24.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22065444 = fieldWeight in 1200, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1200)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Portfolio analysis of the publication profile of a unit of interest, ranging from individuals and organizations to a scientific field or interdisciplinary programs, aims to inform analysts and decision makers about the position of the unit, where it has been, and where it may go in a complex adaptive environment. A portfolio analysis may aim to identify the gap between the current position of an organization and a goal that it intends to achieve or identify competencies of multiple institutions. We introduce a new visual analytic method for analyzing, comparing, and contrasting characteristics of publication portfolios. The new method introduces a novel design of dual-map thematic overlays on global maps of science. Each publication portfolio can be added as one layer of dual-map overlays over 2 related, but distinct, global maps of science: one for citing journals and the other for cited journals. We demonstrate how the new design facilitates a portfolio analysis in terms of patterns emerging from the distributions of citation threads and the dynamics of trajectories as a function of space and time. We first demonstrate the analysis of portfolios defined on a single source article. Then we contrast publication portfolios of multiple comparable units of interest; namely, colleges in universities and corporate research organizations. We also include examples of overlays of scientific fields. We expect that our method will provide new insights to portfolio analysis.
    Type
    a
  6. Leydesdorff, L.; Ahrweiler, P.: In search of a network theory of innovations : relations, positions, and perspectives (2014) 0.00
    0.0029294936 = product of:
      0.005858987 = sum of:
        0.005858987 = product of:
          0.011717974 = sum of:
            0.011717974 = weight(_text_:a in 1531) [ClassicSimilarity], result of:
              0.011717974 = score(doc=1531,freq=24.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22065444 = fieldWeight in 1531, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1531)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    As a complement to Nelson and Winter's (1977) article titled "In Search of a Useful Theory of Innovation," a sociological perspective on innovation networks can be elaborated using Luhmann's social systems theory, on the one hand, and Latour's "sociology of translations," on the other. Because of a common focus on communication, these perspectives can be combined as a set of methodologies. Latour's sociology of translations specifies a mechanism for generating variation in relations ("associations"), whereas Luhmann's systems perspective enables the specification of (functionally different) selection environments such as markets, professional organizations, and political control. Selection environments can be considered as mechanisms of social coordination that can self-organize-beyond the control of human agency-into regimes in terms of interacting codes of communication. Unlike relatively globalized regimes, technological trajectories are organized locally in "landscapes." A resulting "duality of structure" (Giddens, 1979) between the historical organization of trajectories and evolutionary self-organization at the regime level can be expected to drive innovation cycles. Reflexive translations add a third layer of perspectives to (a) the relational analysis of observable links that shape trajectories and (b) the positional analysis of networks in terms of latent dimensions. These three operations can be studied in a single framework, but using different methodologies. Latour's first-order associations can then be analytically distinguished from second-order translations in terms of requiring other communicative competencies. The resulting operations remain infrareflexively nested, and can therefore be used for innovative reconstructions of previously constructed boundaries.
    Type
    a
  7. Leydesdorff, L.; Salah, A.A.A.: Maps on the basis of the Arts & Humanities Citation Index : the journals Leonardo and Art Journal versus "digital humanities" as a topic (2010) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 3436) [ClassicSimilarity], result of:
              0.011481222 = score(doc=3436,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 3436, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3436)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The possibilities of using the Arts & Humanities Citation Index (A&HCI) for journal mapping have not been sufficiently recognized because of the absence of a Journal Citations Report (JCR) for this database. A quasi-JCR for the A&HCI ([2008]) was constructed from the data contained in the Web of Science and is used for the evaluation of two journals as examples: Leonardo and Art Journal. The maps on the basis of the aggregated journal-journal citations within this domain can be compared with maps including references to journals in the Science Citation Index and Social Science Citation Index. Art journals are cited by (social) science journals more than by other art journals, but these journals draw upon one another in terms of their own references. This cultural impact in terms of being cited is not found when documents with a topic such as digital humanities are analyzed. This community of practice functions more as an intellectual organizer than a journal.
    Type
    a
  8. Bornmann, L.; Leydesdorff, L.: Statistical tests and research assessments : a comment on Schneider (2012) (2013) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 752) [ClassicSimilarity], result of:
              0.011481222 = score(doc=752,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 752, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=752)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  9. Bornmann, L.; Leydesdorff, L.: Which cities produce more excellent papers than can be expected? : a new mapping approach, using Google Maps, based on statistical significance testing (2011) 0.00
    0.0026849252 = product of:
      0.0053698504 = sum of:
        0.0053698504 = product of:
          0.010739701 = sum of:
            0.010739701 = weight(_text_:a in 4767) [ClassicSimilarity], result of:
              0.010739701 = score(doc=4767,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20223314 = fieldWeight in 4767, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4767)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The methods presented in this paper allow for a statistical analysis revealing centers of excellence around the world using programs that are freely available. Based on Web of Science data (a fee-based database), field-specific excellence can be identified in cities where highly cited papers were published more frequently than can be expected. Compared to the mapping approaches published hitherto, our approach is more analytically oriented by allowing the assessment of an observed number of excellent papers for a city against the expected number. Top performers in output are cities in which authors are located who publish a statistically significant higher number of highly cited papers than can be expected for these cities. As sample data for physics, chemistry, and psychology show, these cities do not necessarily have a high output of highly cited papers.
    Type
    a
  10. Baumgartner, S.E.; Leydesdorff, L.: Group-based trajectory modeling (GBTM) of citations in scholarly literature : dynamic qualities of "transient" and "sticky knowledge claims" (2014) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 1241) [ClassicSimilarity], result of:
              0.010148063 = score(doc=1241,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 1241, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1241)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Group-based trajectory modeling (GBTM) is applied to the citation curves of articles in six journals and to all citable items in a single field of science (virology, 24 journals) to distinguish among the developmental trajectories in subpopulations. Can citation patterns of highly-cited papers be distinguished in an early phase as "fast-breaking" papers? Can "late bloomers" or "sleeping beauties" be identified? Most interesting, we find differences between "sticky knowledge claims" that continue to be cited more than 10 years after publication and "transient knowledge claims" that show a decay pattern after reaching a peak within a few years. Only papers following the trajectory of a "sticky knowledge claim" can be expected to have a sustained impact. These findings raise questions about indicators of "excellence" that use aggregated citation rates after 2 or 3 years (e.g., impact factors). Because aggregated citation curves can also be composites of the two patterns, fifth-order polynomials (with four bending points) are needed to capture citation curves precisely. For the journals under study, the most frequently cited groups were furthermore much smaller than 10%. Although GBTM has proved a useful method for investigating differences among citation trajectories, the methodology does not allow us to define a percentage of highly cited papers inductively across different fields and journals. Using multinomial logistic regression, we conclude that predictor variables such as journal names, number of authors, etc., do not affect the stickiness of knowledge claims in terms of citations but only the levels of aggregated citations (which are field-specific).
    Type
    a
  11. Leydesdorff, L.; Rotolo, D.; Rafols, I.: Bibliometric perspectives on medical innovation using the medical subject headings of PubMed (2012) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 494) [ClassicSimilarity], result of:
              0.00994303 = score(doc=494,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 494, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=494)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Multiple perspectives on the nonlinear processes of medical innovations can be distinguished and combined using the Medical Subject Headings (MeSH) of the MEDLINE database. Focusing on three main branches-"diseases," "drugs and chemicals," and "techniques and equipment"-we use base maps and overlay techniques to investigate the translations and interactions and thus to gain a bibliometric perspective on the dynamics of medical innovations. To this end, we first analyze the MEDLINE database, the MeSH index tree, and the various options for a static mapping from different perspectives and at different levels of aggregation. Following a specific innovation (RNA interference) over time, the notion of a trajectory which leaves a signature in the database is elaborated. Can the detailed index terms describing the dynamics of research be used to predict the diffusion dynamics of research results? Possibilities are specified for further integration between the MEDLINE database on one hand, and the Science Citation Index and Scopus (containing citation information) on the other.
    Type
    a
  12. Leydesdorff, L.; Opthof, T.: Scopus's source normalized impact per paper (SNIP) versus a journal impact factor based on fractional counting of citations (2010) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 4107) [ClassicSimilarity], result of:
              0.009076704 = score(doc=4107,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 4107, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4107)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Impact factors (and similar measures such as the Scimago Journal Rankings) suffer from two problems: (a) citation behavior varies among fields of science and, therefore, leads to systematic differences, and (b) there are no statistics to inform us whether differences are significant. The recently introduced "source normalized impact per paper" indicator of Scopus tries to remedy the first of these two problems, but a number of normalization decisions are involved, which makes it impossible to test for significance. Using fractional counting of citations-based on the assumption that impact is proportionate to the number of references in the citing documents-citations can be contextualized at the paper level and aggregated impacts of sets can be tested for their significance. It can be shown that the weighted impact of Annals of Mathematics (0.247) is not so much lower than that of Molecular Cell (0.386) despite a five-f old difference between their impact factors (2.793 and 13.156, respectively).
    Type
    a
  13. Leydesdorff, L.; Opthof, T.: Citation analysis with medical subject Headings (MeSH) using the Web of Knowledge : a new routine (2013) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 943) [ClassicSimilarity], result of:
              0.009076704 = score(doc=943,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 943, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=943)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Citation analysis of documents retrieved from the Medline database (at the Web of Knowledge) has been possible only on a case-by-case basis. A technique is presented here for citation analysis in batch mode using both Medical Subject Headings (MeSH) at the Web of Knowledge and the Science Citation Index at the Web of Science (WoS). This freeware routine is applied to the case of "Brugada Syndrome," a specific disease and field of research (since 1992). The journals containing these publications, for example, are attributed to WoS categories other than "cardiac and cardiovascular systems", perhaps because of the possibility of genetic testing for this syndrome in the clinic. With this routine, all the instruments available for citation analysis can now be used on the basis of MeSH terms. Other options for crossing between Medline, WoS, and Scopus are also reviewed.
    Type
    a
  14. Leydesdorff, L.; Strand, Oe.: ¬The Swedish system of innovation : regional synergies in a knowledge-based economy (2013) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 1047) [ClassicSimilarity], result of:
              0.009076704 = score(doc=1047,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 1047, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1047)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Based on the complete set of firm data for Sweden (N = 1,187,421; November 2011), we analyze the mutual information among the geographical, technological, and organizational distributions in terms of synergies at regional and national levels. Using this measure, the interaction among three dimensions can become negative and thus indicate a net export of uncertainty by a system or, in other words, synergy in how knowledge functions are distributed over the carriers. Aggregation at the regional level (NUTS3) of the data organized at the municipal level (NUTS5) shows that 48.5% of the regional synergy is provided by the 3 metropolitan regions of Stockholm, Gothenburg, and Malmö/Lund. Sweden can be considered a centralized and hierarchically organized system. Our results accord with other statistics, but this triple helix indicator measures synergy more specifically and quantitatively. The analysis also provides us with validation for using this measure in previous studies of more regionalized systems of innovation (such as Hungary and Norway).
    Type
    a
  15. Ye, F.Y.; Yu, S.S.; Leydesdorff, L.: ¬The Triple Helix of university-industry-government relations at the country level and its dynamic evolution under the pressures of globalization (2013) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 1110) [ClassicSimilarity], result of:
              0.009076704 = score(doc=1110,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 1110, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1110)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using data from the Web of Science (WoS), we analyze the mutual information among university, industry, and government addresses (U-I-G) at the country level for a number of countries. The dynamic evolution of the Triple Helix can thus be compared among developed and developing nations in terms of cross-sectional coauthorship relations. The results show that the Triple Helix interactions among the three subsystems U-I-G become less intensive over time, but unequally for different countries. We suggest that globalization erodes local Triple Helix relations and thus can be expected to have increased differentiation in national systems since the mid-1990s. This effect of globalization is more pronounced in developed countries than in developing ones. In the dynamic analysis, we focus on a more detailed comparison between China and the United States. Specifically, the Chinese Academy of the (Social) Sciences is changing increasingly from a public research institute to an academic one, and this has a measurable effect on China's position in the globalization.
    Type
    a
  16. Leydesdorff, L.; Moya-Anegón, F.de; Guerrero-Bote, V.P.: Journal maps on the basis of Scopus data : a comparison with the Journal Citation Reports of the ISI (2010) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 3335) [ClassicSimilarity], result of:
              0.00894975 = score(doc=3335,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 3335, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3335)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using the Scopus dataset (1996-2007) a grand matrix of aggregated journal-journal citations was constructed. This matrix can be compared in terms of the network structures with the matrix contained in the Journal Citation Reports (JCR) of the Institute of Scientific Information (ISI). Because the Scopus database contains a larger number of journals and covers the humanities, one would expect richer maps. However, the matrix is in this case sparser than in the case of the ISI data. This is because of (a) the larger number of journals covered by Scopus and (b) the historical record of citations older than 10 years contained in the ISI database. When the data is highly structured, as in the case of large journals, the maps are comparable, although one may have to vary a threshold (because of the differences in densities). In the case of interdisciplinary journals and journals in the social sciences and humanities, the new database does not add a lot to what is possible with the ISI databases.
    Type
    a
  17. Leydesdorff, L.; Hammarfelt, B.: ¬The structure of the Arts & Humanities Citation Index : a mapping on the basis of aggregated citations among 1,157 journals (2011) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 4941) [ClassicSimilarity], result of:
              0.00894975 = score(doc=4941,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 4941, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4941)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using the Arts & Humanities Citation Index (A&HCI) 2008, we apply mapping techniques previously developed for mapping journal structures in the Science and Social Sciences Citation Indices. Citation relations among the 110,718 records were aggregated at the level of 1,157 journals specific to the A&HCI, and the journal structures are questioned on whether a cognitive structure can be reconstructed and visualized. Both cosine-normalization (bottom up) and factor analysis (top down) suggest a division into approximately 12 subsets. The relations among these subsets are explored using various visualization techniques. However, we were not able to retrieve this structure using the Institute for Scientific Information Subject Categories, including the 25 categories that are specific to the A&HCI. We discuss options for validation such as against the categories of the Humanities Indicators of the American Academy of Arts and Sciences, the panel structure of the European Reference Index for the Humanities, and compare our results with the curriculum organization of the Humanities Section of the College of Letters and Sciences of the University of California at Los Angeles as an example of institutional organization.
    Type
    a
  18. Leydesdorff, L.; Ivanova, I.A.: Mutual redundancies in interhuman communication systems : steps toward a calculus of processing meaning (2014) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 1211) [ClassicSimilarity], result of:
              0.00894975 = score(doc=1211,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 1211, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1211)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The study of interhuman communication requires a more complex framework than Claude E. Shannon's (1948) mathematical theory of communication because "information" is defined in the latter case as meaningless uncertainty. Assuming that meaning cannot be communicated, we extend Shannon's theory by defining mutual redundancy as a positional counterpart of the relational communication of information. Mutual redundancy indicates the surplus of meanings that can be provided to the exchanges in reflexive communications. The information is redundant because it is based on "pure sets" (i.e., without subtraction of mutual information in the overlaps). We show that in the three-dimensional case (e.g., of a triple helix of university-industry-government relations), mutual redundancy is equal to mutual information (Rxyz = Txyz); but when the dimensionality is even, the sign is different. We generalize to the measurement in N dimensions and proceed to the interpretation. Using Niklas Luhmann's (1984-1995) social systems theory and/or Anthony Giddens's (1979, 1984) structuration theory, mutual redundancy can be provided with an interpretation in the sociological case: Different meaning-processing structures code and decode with other algorithms. A surplus of ("absent") options can then be generated that add to the redundancy. Luhmann's "functional (sub)systems" of expectations or Giddens's "rule-resource sets" are positioned mutually, but coupled operationally in events or "instantiated" in actions. Shannon-type information is generated by the mediation, but the "structures" are (re-)positioned toward one another as sets of (potentially counterfactual) expectations. The structural differences among the coding and decoding algorithms provide a source of additional options in reflexive and anticipatory communications.
    Type
    a
  19. Ye, F.Y.; Leydesdorff, L.: ¬The "academic trace" of the performance matrix : a mathematical synthesis of the h-index and the integrated impact indicator (I3) (2014) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 1237) [ClassicSimilarity], result of:
              0.00894975 = score(doc=1237,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 1237, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1237)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The h-index provides us with 9 natural classes which can be written as a matrix of 3 vectors. The 3 vectors are: X = (X1, X2, X3) and indicates publication distribution in the h-core, the h-tail, and the uncited ones, respectively; Y = (Y1, Y2, Y3) denotes the citation distribution of the h-core, the h-tail and the so-called "excess" citations (above the h-threshold), respectively; and Z = (Z1, Z2, Z3) = (Y1-X1, Y2-X2, Y3-X3). The matrix V = (X,Y,Z)T constructs a measure of academic performance, in which the 9 numbers can all be provided with meanings in different dimensions. The "academic trace" tr(V) of this matrix follows naturally, and contributes a unique indicator for total academic achievements by summarizing and weighting the accumulation of publications and citations. This measure can also be used to combine the advantages of the h-index and the integrated impact indicator (I3) into a single number with a meaningful interpretation of the values. We illustrate the use of tr(V) for the cases of 2 journal sets, 2 universities, and ourselves as 2 individual authors.
    Type
    a
  20. Leydesdorff, L.; Nerghes, A.: Co-word maps and topic modeling : a comparison using small and medium-sized corpora (N?<?1.000) (2017) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 3538) [ClassicSimilarity], result of:
              0.008285859 = score(doc=3538,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 3538, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3538)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Induced by "big data," "topic modeling" has become an attractive alternative to mapping co-words in terms of co-occurrences and co-absences using network techniques. Does topic modeling provide an alternative for co-word mapping in research practices using moderately sized document collections? We return to the word/document matrix using first a single text with a strong argument ("The Leiden Manifesto") and then upscale to a sample of moderate size (n?=?687) to study the pros and cons of the two approaches in terms of the resulting possibilities for making semantic maps that can serve an argument. The results from co-word mapping (using two different routines) versus topic modeling are significantly uncorrelated. Whereas components in the co-word maps can easily be designated, the topic models provide sets of words that are very differently organized. In these samples, the topic models seem to reveal similarities other than semantic ones (e.g., linguistic ones). In other words, topic modeling does not replace co-word mapping in small and medium-sized sets; but the paper leaves open the possibility that topic modeling would work well for the semantic mapping of large sets.
    Type
    a