Search (2 results, page 1 of 1)

  • × author_ss:"Melucci, M."
  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  1. Buccio, E. Di; Melucci, M.; Moro, F.: Detecting verbose queries and improving information retrieval (2014) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 2695) [ClassicSimilarity], result of:
              0.010148063 = score(doc=2695,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 2695, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2695)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Although most of the queries submitted to search engines are composed of a few keywords and have a length that ranges from three to six words, more than 15% of the total volume of the queries are verbose, introduce ambiguity and cause topic drifts. We consider verbosity a different property of queries from length since a verbose query is not necessarily long, it might be succinct and a short query might be verbose. This paper proposes a methodology to automatically detect verbose queries and conditionally modify queries. The methodology proposed in this paper exploits state-of-the-art classification algorithms, combines concepts from a large linguistic database and uses a topic gisting algorithm we designed for verbose query modification purposes. Our experimental results have been obtained using the TREC Robust track collection, thirty topics classified by difficulty degree, four queries per topic classified by verbosity and length, and human assessment of query verbosity. Our results suggest that the methodology for query modification conditioned to query verbosity detection and topic gisting is significantly effective and that query modification should be refined when topic difficulty and query verbosity are considered since these two properties interact and query verbosity is not straightforwardly related to query length.
    Type
    a
  2. Melucci, M.: Contextual search : a computational framework (2012) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 4913) [ClassicSimilarity], result of:
              0.009567685 = score(doc=4913,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 4913, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4913)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The growing availability of data in electronic form, the expansion of the World Wide Web and the accessibility of computational methods for large-scale data processing have allowed researchers in Information Retrieval (IR) to design systems which can effectively and efficiently constrain search within the boundaries given by context, thus transforming classical search into contextual search. Contextual Search: A Computational Framework introduces contextual search within a computational framework based on contextual variables, contextual factors and statistical models. It describes how statistical models can process contextual variables to infer the contextual factors underlying the current search context. It also provides background to the subject by: placing it among other surveys on relevance, interaction, context, and behaviour; providing a description of the contextual variables used for implementing the statistical models which represent and predict relevance and contextual factors; and providing an overview of the evaluation methodologies and findings relevant to this subject. Contextual Search: A Computational Framework is a highly recommended read, both for beginners who are embarking on research in this area and as a useful reference for established IR researchers.
    Content
    Table of contents 1. Introduction 2. Query Intent 3. Personal Interest 4. Document Quality 5. Contextual Search Evaluation 6. Conclusions Acknowledgements References A. Implementations

Authors

Types