Search (2 results, page 1 of 1)

  • × author_ss:"Moed, H.F."
  • × theme_ss:"Elektronisches Publizieren"
  1. Moed, H.F.; Halevi, G.: On full text download and citation distributions in scientific-scholarly journals (2016) 0.02
    0.01974305 = product of:
      0.0394861 = sum of:
        0.0394861 = sum of:
          0.008285859 = weight(_text_:a in 2646) [ClassicSimilarity], result of:
            0.008285859 = score(doc=2646,freq=12.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.15602624 = fieldWeight in 2646, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2646)
          0.03120024 = weight(_text_:22 in 2646) [ClassicSimilarity], result of:
            0.03120024 = score(doc=2646,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 2646, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2646)
      0.5 = coord(1/2)
    
    Abstract
    A statistical analysis of full text downloads of articles in Elsevier's ScienceDirect covering all disciplines reveals large differences in download frequencies, their skewness, and their correlation with Scopus-based citation counts, between disciplines, journals, and document types. Download counts tend to be 2 orders of magnitude higher and less skewedly distributed than citations. A mathematical model based on the sum of two exponentials does not adequately capture monthly download counts. The degree of correlation at the article level within a journal is similar to that at the journal level in the discipline covered by that journal, suggesting that the differences between journals are, to a large extent, discipline specific. Despite the fact that in all studied journals download and citation counts per article positively correlate, little overlap may exist between the set of articles appearing in the top of the citation distribution and that with the most frequently downloaded ones. Usage and citation leaks, bulk downloading, differences between reader and author populations in a subject field, the type of document or its content, differences in obsolescence patterns between downloads and citations, and different functions of reading and citing in the research process all provide possible explanations of differences between download and citation distributions.
    Date
    22. 1.2016 14:11:17
    Type
    a
  2. Moed, H.F.: ¬The effect of "open access" on citation impact : an analysis of ArXiv's condensed matter section (2007) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 621) [ClassicSimilarity], result of:
              0.009567685 = score(doc=621,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 621, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=621)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article statistically analyzes how the citation impact of articles deposited in the Condensed Matter section of the preprint server ArXiv (hosted by Cornell University), and subsequently published in a scientific journal, compares to that of articles in the same journal that were not deposited in the archive. Its principal aim is to further illustrate and roughly estimate the effect of two factors, early view and quality bias, on differences in citation impact between these two sets of papers, using citation data from Thomson Scientific's Web of Science. It presents estimates for a number of journals in the field of condensed matter physics. To discriminate between an open access effect and an early view effect, longitudinal citation data were analyzed covering a time period as long as 7 years. Quality bias was measured by calculating ArXiv citation impact differentials at the level of individual authors publishing in a journal, taking into account coauthorship. The analysis provided evidence of a strong quality bias and early view effect. Correcting for these effects, there is in a sample of six condensed matter physics journals studied in detail no sign of a general open access advantage of papers deposited in ArXiv. The study does provide evidence that ArXiv accelerates citation due to the fact that ArXiv makes papers available earlier rather than makes them freely available.
    Type
    a