Search (4 results, page 1 of 1)

  • × author_ss:"Wielemaker, J."
  • × type_ss:"el"
  1. Assem, M. van; Menken, M.R.; Schreiber, G.; Wielemaker, J.; Wielinga, B.: ¬A method for converting thesauri to RDF/OWL (2004) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 4644) [ClassicSimilarity], result of:
              0.009471525 = score(doc=4644,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 4644, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4644)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper describes a method for converting existing thesauri and related resources from their native format to RDF(S) and OWL. The method identifies four steps in the conversion process. In each step, decisions have to be taken with respect to the syntax or semantics of the resulting representation. Each step is supported through a number of guidelines. The method is illustrated through conversions of two large thesauri: MeSH and WordNet.
    Type
    a
  2. Wielinga, B.; Wielemaker, J.; Schreiber, G.; Assem, M. van: Methods for porting resources to the Semantic Web (2004) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 4640) [ClassicSimilarity], result of:
              0.008118451 = score(doc=4640,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 4640, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4640)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ontologies will play a central role in the development of the Semantic Web. It is unrealistic to assume that such ontologies will be developed from scratch. Rather, we assume that existing resources such as thesauri and lexical data bases will be reused in the development of ontologies for the Semantic Web. In this paper we describe a method for converting existing source material to a representation that is compatible with Semantic Web languages such as RDF(S) and OWL. The method is illustrated with three case studies: converting Wordnet, AAT and MeSH to RDF(S) and OWL.
    Type
    a
  3. Schreiber, G.; Amin, A.; Assem, M. van; Boer, V. de; Hardman, L.; Hildebrand, M.; Omelayenko, B.; Ossenbruggen, J. van; Wielemaker, J.; Wielinga, B.; Tordai, A.; Aroyoa, L.: Semantic annotation and search of cultural-heritage collections : the MultimediaN E-Culture demonstrator (2008) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 4646) [ClassicSimilarity], result of:
              0.007030784 = score(doc=4646,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 4646, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4646)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this article we describe a SemanticWeb application for semantic annotation and search in large virtual collections of cultural-heritage objects, indexed with multiple vocabularies. During the annotation phase we harvest, enrich and align collection metadata and vocabularies. The semantic-search facilities support keyword-based queries of the graph (currently 20M triples), resulting in semantically grouped result clusters, all representing potential semantic matches of the original query. We show two sample search scenario's. The annotation and search software is open source and is already being used by third parties. All software is based on establishedWeb standards, in particular HTML/XML, CSS, RDF/OWL, SPARQL and JavaScript.
  4. Schreiber, G.; Amin, A.; Assem, M. van; Boer, V. de; Hardman, L.; Hildebrand, M.; Hollink, L.; Huang, Z.; Kersen, J. van; Niet, M. de; Omelayenko, B.; Ossenbruggen, J. van; Siebes, R.; Taekema, J.; Wielemaker, J.; Wielinga, B.: MultimediaN E-Culture demonstrator (2006) 0.00
    0.0010148063 = product of:
      0.0020296127 = sum of:
        0.0020296127 = product of:
          0.0040592253 = sum of:
            0.0040592253 = weight(_text_:a in 4648) [ClassicSimilarity], result of:
              0.0040592253 = score(doc=4648,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.07643694 = fieldWeight in 4648, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4648)
          0.5 = coord(1/2)
      0.5 = coord(1/2)