Search (44 results, page 3 of 3)

  • × author_ss:"Zhang, Y."
  1. Zhang, Y.: Undergraduate students' mental models of the Web as an information retrieval system (2008) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 2385) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=2385,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 2385, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2385)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study explored undergraduate students' mental models of the Web as an information retrieval system. Mental models play an important role in people's interaction with information systems. Better understanding of people's mental models could inspire better interface design and user instruction. Multiple data-collection methods, including questionnaire, semistructured interview, drawing, and participant observation, were used to elicit students' mental models of the Web from different perspectives, though only data from interviews and drawing descriptions are reported in this article. Content analysis of the transcripts showed that students had utilitarian rather than structural mental models of the Web. The majority of participants saw the Web as a huge information resource where everything can be found rather than an infrastructure consisting of hardware and computer applications. Students had different mental models of how information is organized on the Web, and the models varied in correctness and complexity. Students' mental models of search on the Web were illustrated from three points of view: avenues of getting information, understanding of search engines' working mechanisms, and search tactics. The research results suggest that there are mainly three sources contributing to the construction of mental models: personal observation, communication with others, and class instruction. In addition to structural and functional aspects, mental models have an emotional dimension.
    Type
    a
  2. Lu, C.; Zhang, Y.; Ahn, Y.-Y.; Ding, Y.; Zhang, C.; Ma, D.: Co-contributorship network and division of labor in individual scientific collaborations (2020) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 5963) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=5963,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 5963, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5963)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Collaborations are pervasive in current science. Collaborations have been studied and encouraged in many disciplines. However, little is known about how a team really functions from the detailed division of labor within. In this research, we investigate the patterns of scientific collaboration and division of labor within individual scholarly articles by analyzing their co-contributorship networks. Co-contributorship networks are constructed by performing the one-mode projection of the author-task bipartite networks obtained from 138,787 articles published in PLoS journals. Given an article, we define 3 types of contributors: Specialists, Team-players, and Versatiles. Specialists are those who contribute to all their tasks alone; team-players are those who contribute to every task with other collaborators; and versatiles are those who do both. We find that team-players are the majority and they tend to contribute to the 5 most common tasks as expected, such as "data analysis" and "performing experiments." The specialists and versatiles are more prevalent than expected by our designed 2 null models. Versatiles tend to be senior authors associated with funding and supervision. Specialists are associated with 2 contrasting roles: the supervising role as team leaders or marginal and specialized contributors.
    Type
    a
  3. Shah, C.; Anderson, T.; Hagen, L.; Zhang, Y.: ¬An iSchool approach to data science : human-centered, socially responsible, and context-driven (2021) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 244) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=244,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 244, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=244)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Information Schools, also referred to as iSchools, have a unique approach to data science with three distinct components: human-centeredness, socially responsible, and rooted in context. In this position paper, we highlight and expand on these components and show how they are integrated in various research and educational activities related to data science that are being carried out at iSchools. We argue that the iSchool way of doing data science is not only highly relevant to the current times, but also crucial in solving problems of tomorrow. Specifically, we accentuate the issues of developing insights and solutions that are not only data-driven, but also incorporate human values, including transparency, privacy, ethics, fairness, and equity. This approach to data science has meaningful implications on how we educate the students and train the next generation of scholars and policymakers. Here, we provide some of those design decisions, rooted in evidence-based research, along with our perspective on how data science is currently situated and how it should be advanced in iSchools.
    Type
    a
  4. Trace, C.B.; Zhang, Y.; Yi, S.; Williams-Brown, M.Y.: Information practices around genetic testing for ovarian cancer patients (2023) 0.00
    8.4567186E-4 = product of:
      0.0016913437 = sum of:
        0.0016913437 = product of:
          0.0033826875 = sum of:
            0.0033826875 = weight(_text_:a in 1071) [ClassicSimilarity], result of:
              0.0033826875 = score(doc=1071,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.06369744 = fieldWeight in 1071, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1071)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a

Years

Types

  • a 43
  • m 1
  • More… Less…

Classifications