Search (16 results, page 1 of 1)

  • × theme_ss:"Computerlinguistik"
  • × theme_ss:"Literaturübersicht"
  1. Warner, A.J.: Natural language processing (1987) 0.06
    0.05533268 = product of:
      0.11066536 = sum of:
        0.11066536 = sum of:
          0.0108246 = weight(_text_:a in 337) [ClassicSimilarity], result of:
            0.0108246 = score(doc=337,freq=2.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.20383182 = fieldWeight in 337, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.125 = fieldNorm(doc=337)
          0.09984076 = weight(_text_:22 in 337) [ClassicSimilarity], result of:
            0.09984076 = score(doc=337,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.61904186 = fieldWeight in 337, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.125 = fieldNorm(doc=337)
      0.5 = coord(1/2)
    
    Source
    Annual review of information science and technology. 22(1987), S.79-108
    Type
    a
  2. Haas, S.W.: Natural language processing : toward large-scale, robust systems (1996) 0.03
    0.028787265 = product of:
      0.05757453 = sum of:
        0.05757453 = sum of:
          0.007654148 = weight(_text_:a in 7415) [ClassicSimilarity], result of:
            0.007654148 = score(doc=7415,freq=4.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.14413087 = fieldWeight in 7415, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0625 = fieldNorm(doc=7415)
          0.04992038 = weight(_text_:22 in 7415) [ClassicSimilarity], result of:
            0.04992038 = score(doc=7415,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.30952093 = fieldWeight in 7415, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=7415)
      0.5 = coord(1/2)
    
    Abstract
    State of the art review of natural language processing updating an earlier review published in ARIST 22(1987). Discusses important developments that have allowed for significant advances in the field of natural language processing: materials and resources; knowledge based systems and statistical approaches; and a strong emphasis on evaluation. Reviews some natural language processing applications and common problems still awaiting solution. Considers closely related applications such as language generation and th egeneration phase of machine translation which face the same problems as natural language processing. Covers natural language methodologies for information retrieval only briefly
    Type
    a
  3. Campe, P.: Case, semantic roles, and grammatical relations : a comprehensive bibliography (1994) 0.00
    0.0040592253 = product of:
      0.008118451 = sum of:
        0.008118451 = product of:
          0.016236901 = sum of:
            0.016236901 = weight(_text_:a in 8663) [ClassicSimilarity], result of:
              0.016236901 = score(doc=8663,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.30574775 = fieldWeight in 8663, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=8663)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Contains references to more than 6000 publications with a subject and a language index as well as a guide to the relevant languages and language families
  4. Simmons, R.F.: Automated language processing (1966) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 220) [ClassicSimilarity], result of:
              0.0108246 = score(doc=220,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 220, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=220)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  5. Bobrow, D.G.; Fraser, J.B.; Quillian, M.R.: Automated language processing (1967) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 228) [ClassicSimilarity], result of:
              0.0108246 = score(doc=228,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 228, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=228)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  6. Salton, G.: Automated language processing (1968) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 233) [ClassicSimilarity], result of:
              0.0108246 = score(doc=233,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 233, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=233)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  7. Montgomery, C.A.: Automated language processing (1969) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 240) [ClassicSimilarity], result of:
              0.0108246 = score(doc=240,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 240, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=240)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  8. Kay, M.; Sparck Jones, K.: Automated language processing (1971) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 250) [ClassicSimilarity], result of:
              0.0108246 = score(doc=250,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 250, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=250)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  9. Walker, D.E.: Automated language processing (1973) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 257) [ClassicSimilarity], result of:
              0.0108246 = score(doc=257,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 257, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=257)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  10. Damerau, F.J.: Automated language processing (1976) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 265) [ClassicSimilarity], result of:
              0.0108246 = score(doc=265,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 265, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=265)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  11. Becker, D.: Automated language processing (1981) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 287) [ClassicSimilarity], result of:
              0.0108246 = score(doc=287,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 287, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=287)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  12. Liu, X.; Croft, W.B.: Statistical language modeling for information retrieval (2004) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 4277) [ClassicSimilarity], result of:
              0.010148063 = score(doc=4277,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 4277, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4277)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This chapter reviews research and applications in statistical language modeling for information retrieval (IR), which has emerged within the past several years as a new probabilistic framework for describing information retrieval processes. Generally speaking, statistical language modeling, or more simply language modeling (LM), involves estimating a probability distribution that captures statistical regularities of natural language use. Applied to information retrieval, language modeling refers to the problem of estimating the likelihood that a query and a document could have been generated by the same language model, given the language model of the document either with or without a language model of the query. The roots of statistical language modeling date to the beginning of the twentieth century when Markov tried to model letter sequences in works of Russian literature (Manning & Schütze, 1999). Zipf (1929, 1932, 1949, 1965) studied the statistical properties of text and discovered that the frequency of works decays as a Power function of each works rank. However, it was Shannon's (1951) work that inspired later research in this area. In 1951, eager to explore the applications of his newly founded information theory to human language, Shannon used a prediction game involving n-grams to investigate the information content of English text. He evaluated n-gram models' performance by comparing their crossentropy an texts with the true entropy estimated using predictions made by human subjects. For many years, statistical language models have been used primarily for automatic speech recognition. Since 1980, when the first significant language model was proposed (Rosenfeld, 2000), statistical language modeling has become a fundamental component of speech recognition, machine translation, and spelling correction.
    Type
    a
  13. Schwarz, C.: Natural language and information retrieval : Kommentierte Literaturliste zu Systemen, Verfahren und Tools (1986) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 408) [ClassicSimilarity], result of:
              0.009471525 = score(doc=408,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 408, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=408)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  14. Perez-Carballo, J.; Strzalkowski, T.: Natural language information retrieval : progress report (2000) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 6421) [ClassicSimilarity], result of:
              0.009471525 = score(doc=6421,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 6421, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6421)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  15. Chowdhury, G.G.: Natural language processing (2002) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 4284) [ClassicSimilarity], result of:
              0.007030784 = score(doc=4284,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 4284, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4284)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Natural Language Processing (NLP) is an area of research and application that explores how computers can be used to understand and manipulate natural language text or speech to do useful things. NLP researchers aim to gather knowledge an how human beings understand and use language so that appropriate tools and techniques can be developed to make computer systems understand and manipulate natural languages to perform desired tasks. The foundations of NLP lie in a number of disciplines, namely, computer and information sciences, linguistics, mathematics, electrical and electronic engineering, artificial intelligence and robotics, and psychology. Applications of NLP include a number of fields of study, such as machine translation, natural language text processing and summarization, user interfaces, multilingual and cross-language information retrieval (CLIR), speech recognition, artificial intelligence, and expert systems. One important application area that is relatively new and has not been covered in previous ARIST chapters an NLP relates to the proliferation of the World Wide Web and digital libraries.
    Type
    a
  16. Blair, D.C.: Information retrieval and the philosophy of language (2002) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 4283) [ClassicSimilarity], result of:
              0.0054123 = score(doc=4283,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 4283, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4283)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Information retrieval - the retrieval, primarily, of documents or textual material - is fundamentally a linguistic process. At the very least we must describe what we want and match that description with descriptions of the information that is available to us. Furthermore, when we describe what we want, we must mean something by that description. This is a deceptively simple act, but such linguistic events have been the grist for philosophical analysis since Aristotle. Although there are complexities involved in referring to authors, document types, or other categories of information retrieval context, here I wish to focus an one of the most problematic activities in information retrieval: the description of the intellectual content of information items. And even though I take information retrieval to involve the description and retrieval of written text, what I say here is applicable to any information item whose intellectual content can be described for retrieval-books, documents, images, audio clips, video clips, scientific specimens, engineering schematics, and so forth. For convenience, though, I will refer only to the description and retrieval of documents. The description of intellectual content can go wrong in many obvious ways. We may describe what we want incorrectly; we may describe it correctly but in such general terms that its description is useless for retrieval; or we may describe what we want correctly, but misinterpret the descriptions of available information, and thereby match our description of what we want incorrectly. From a linguistic point of view, we can be misunderstood in the process of retrieval in many ways. Because the philosophy of language deals specifically with how we are understood and mis-understood, it should have some use for understanding the process of description in information retrieval. First, however, let us examine more closely the kinds of misunderstandings that can occur in information retrieval. We use language in searching for information in two principal ways. We use it to describe what we want and to discriminate what we want from other information that is available to us but that we do not want. Description and discrimination together articulate the goals of the information search process; they also delineate the two principal ways in which language can fail us in this process. Van Rijsbergen (1979) was the first to make this distinction, calling them "representation" and "discrimination.""
    Type
    a