Search (82 results, page 1 of 5)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  • × year_i:[2000 TO 2010}
  1. Lin, W.-Y.C.: ¬The concept and applications of faceted classifications (2006) 0.03
    0.02766634 = product of:
      0.05533268 = sum of:
        0.05533268 = sum of:
          0.0054123 = weight(_text_:a in 5083) [ClassicSimilarity], result of:
            0.0054123 = score(doc=5083,freq=2.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.10191591 = fieldWeight in 5083, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0625 = fieldNorm(doc=5083)
          0.04992038 = weight(_text_:22 in 5083) [ClassicSimilarity], result of:
            0.04992038 = score(doc=5083,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.30952093 = fieldWeight in 5083, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=5083)
      0.5 = coord(1/2)
    
    Date
    27. 5.2007 22:19:35
    Type
    a
  2. Olson, H.A.: Sameness and difference : a cultural foundation of classification (2001) 0.03
    0.025941458 = product of:
      0.051882915 = sum of:
        0.051882915 = sum of:
          0.008202582 = weight(_text_:a in 166) [ClassicSimilarity], result of:
            0.008202582 = score(doc=166,freq=6.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.1544581 = fieldWeight in 166, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0546875 = fieldNorm(doc=166)
          0.043680333 = weight(_text_:22 in 166) [ClassicSimilarity], result of:
            0.043680333 = score(doc=166,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.2708308 = fieldWeight in 166, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=166)
      0.5 = coord(1/2)
    
    Abstract
    The idea of sameness is used to gather material in classifications. However, it is also used to separate what is different. Sameness and difference as guiding principles of classification seem obvious but are actually fundamental characteristics specifically related to Western culture. Sameness is not a singular factor, but has the potential to represent multiple characteristics or facets. This article explores the ramifications of which characteristics are used to define classifications and in what order. It explains the primacy of division by discipline, its origins in Western philosophy, and the cultural specificity that results. The Dewey Decimal Classification is used as an example throughout.
    Date
    10. 9.2000 17:38:22
    Type
    a
  3. Slavic, A.: On the nature and typology of documentary classifications and their use in a networked environment (2007) 0.02
    0.022779368 = product of:
      0.045558736 = sum of:
        0.045558736 = sum of:
          0.008118451 = weight(_text_:a in 780) [ClassicSimilarity], result of:
            0.008118451 = score(doc=780,freq=8.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.15287387 = fieldWeight in 780, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=780)
          0.037440285 = weight(_text_:22 in 780) [ClassicSimilarity], result of:
            0.037440285 = score(doc=780,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 780, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=780)
      0.5 = coord(1/2)
    
    Abstract
    Networked orientated standards for vocabulary publishing and exchange and proposals for terminological services and terminology registries will improve sharing and use of all knowledge organization systems in the networked information environment. This means that documentary classifications may also become more applicable for use outside their original domain of application. The paper summarises some characteristics common to documentary classifications and explains some terminological, functional and implementation aspects. The original purpose behind each classification scheme determines the functions that the vocabulary is designed to facilitate. These functions influence the structure, semantics and syntax, scheme coverage and format in which classification data are published and made available. The author suggests that attention should be paid to the differences between documentary classifications as these may determine their suitability for a certain purpose and may impose different requirements with respect to their use online. As we speak, many classifications are being created for knowledge organization and it may be important to promote expertise from the bibliographic domain with respect to building and using classification systems.
    Date
    22.12.2007 17:22:31
    Type
    a
  4. Beghtol, C.: Naïve classification systems and the global information society (2004) 0.02
    0.018529613 = product of:
      0.037059225 = sum of:
        0.037059225 = sum of:
          0.005858987 = weight(_text_:a in 3483) [ClassicSimilarity], result of:
            0.005858987 = score(doc=3483,freq=6.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.11032722 = fieldWeight in 3483, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3483)
          0.03120024 = weight(_text_:22 in 3483) [ClassicSimilarity], result of:
            0.03120024 = score(doc=3483,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 3483, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3483)
      0.5 = coord(1/2)
    
    Abstract
    Classification is an activity that transcends time and space and that bridges the divisions between different languages and cultures, including the divisions between academic disciplines. Classificatory activity, however, serves different purposes in different situations. Classifications for infonnation retrieval can be called "professional" classifications and classifications in other fields can be called "naïve" classifications because they are developed by people who have no particular interest in classificatory issues. The general purpose of naïve classification systems is to discover new knowledge. In contrast, the general purpose of information retrieval classifications is to classify pre-existing knowledge. Different classificatory purposes may thus inform systems that are intended to span the cultural specifics of the globalized information society. This paper builds an previous research into the purposes and characteristics of naïve classifications. It describes some of the relationships between the purpose and context of a naive classification, the units of analysis used in it, and the theory that the context and the units of analysis imply.
    Footnote
    Vgl.: Jacob, E.K.: Proposal for a classification of classifications built on Beghtol's distinction between "Naïve Classification" and "Professional Classification". In: Knowledge organization. 37(2010) no.2, S.111-120.
    Pages
    S.19-22
    Type
    a
  5. Qin, J.: Evolving paradigms of knowledge representation and organization : a comparative study of classification, XML/DTD and ontology (2003) 0.02
    0.015794437 = product of:
      0.031588875 = sum of:
        0.031588875 = sum of:
          0.0066286866 = weight(_text_:a in 2763) [ClassicSimilarity], result of:
            0.0066286866 = score(doc=2763,freq=12.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.12482099 = fieldWeight in 2763, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.03125 = fieldNorm(doc=2763)
          0.02496019 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
            0.02496019 = score(doc=2763,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.15476047 = fieldWeight in 2763, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2763)
      0.5 = coord(1/2)
    
    Abstract
    The different points of views an knowledge representation and organization from various research communities reflect underlying philosophies and paradigms in these communities. This paper reviews differences and relations in knowledge representation and organization and generalizes four paradigms-integrative and disintegrative pragmatism and integrative and disintegrative epistemologism. Examples such as classification, XML schemas, and ontologies are compared based an how they specify concepts, build data models, and encode knowledge organization structures. 1. Introduction Knowledge representation (KR) is a term that several research communities use to refer to somewhat different aspects of the same research area. The artificial intelligence (AI) community considers KR as simply "something to do with writing down, in some language or communications medium, descriptions or pictures that correspond in some salient way to the world or a state of the world" (Duce & Ringland, 1988, p. 3). It emphasizes the ways in which knowledge can be encoded in a computer program (Bench-Capon, 1990). For the library and information science (LIS) community, KR is literally the synonym of knowledge organization, i.e., KR is referred to as the process of organizing knowledge into classifications, thesauri, or subject heading lists. KR has another meaning in LIS: it "encompasses every type and method of indexing, abstracting, cataloguing, classification, records management, bibliography and the creation of textual or bibliographic databases for information retrieval" (Anderson, 1996, p. 336). Adding the social dimension to knowledge organization, Hjoerland (1997) states that knowledge is a part of human activities and tied to the division of labor in society, which should be the primary organization of knowledge. Knowledge organization in LIS is secondary or derived, because knowledge is organized in learned institutions and publications. These different points of views an KR suggest that an essential difference in the understanding of KR between both AI and LIS lies in the source of representationwhether KR targets human activities or derivatives (knowledge produced) from human activities. This difference also decides their difference in purpose-in AI KR is mainly computer-application oriented or pragmatic and the result of representation is used to support decisions an human activities, while in LIS KR is conceptually oriented or abstract and the result of representation is used for access to derivatives from human activities.
    Date
    12. 9.2004 17:22:35
    Type
    a
  6. Wang, Z.; Chaudhry, A.S.; Khoo, C.S.G.: Using classification schemes and thesauri to build an organizational taxonomy for organizing content and aiding navigation (2008) 0.02
    0.015186245 = product of:
      0.03037249 = sum of:
        0.03037249 = sum of:
          0.0054123 = weight(_text_:a in 2346) [ClassicSimilarity], result of:
            0.0054123 = score(doc=2346,freq=8.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.10191591 = fieldWeight in 2346, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.03125 = fieldNorm(doc=2346)
          0.02496019 = weight(_text_:22 in 2346) [ClassicSimilarity], result of:
            0.02496019 = score(doc=2346,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.15476047 = fieldWeight in 2346, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2346)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - Potential and benefits of classification schemes and thesauri in building organizational taxonomies cannot be fully utilized by organizations. Empirical data of building an organizational taxonomy by the top-down approach of using classification schemes and thesauri appear to be lacking. The paper seeks to make a contribution in this regard. Design/methodology/approach - A case study of building an organizational taxonomy was conducted in the information studies domain for the Division of Information Studies at Nanyang Technology University, Singapore. The taxonomy was built by using the Dewey Decimal Classification, the Information Science Taxonomy, two information systems taxonomies, and three thesauri (ASIS&T, LISA, and ERIC). Findings - Classification schemes and thesauri were found to be helpful in creating the structure and categories related to the subject facet of the taxonomy, but organizational community sources had to be consulted and several methods had to be employed. The organizational activities and stakeholders' needs had to be identified to determine the objectives, facets, and the subject coverage of the taxonomy. Main categories were determined by identifying the stakeholders' interests and consulting organizational community sources and domain taxonomies. Category terms were selected from terminologies of classification schemes, domain taxonomies, and thesauri against the stakeholders' interests. Hierarchical structures of the main categories were constructed in line with the stakeholders' perspectives and the navigational role taking advantage of structures/term relationships from classification schemes and thesauri. Categories were determined in line with the concepts and the hierarchical levels. Format of categories were uniformed according to a commonly used standard. The consistency principle was employed to make the taxonomy structure and categories neater. Validation of the draft taxonomy through consultations with the stakeholders further refined the taxonomy. Originality/value - No similar study could be traced in the literature. The steps and methods used in the taxonomy development, and the information studies taxonomy itself, will be helpful for library and information schools and other similar organizations in their effort to develop taxonomies for organizing content and aiding navigation on organizational sites.
    Date
    7.11.2008 15:22:04
    Type
    a
  7. Maltby, A.; Marcella, R.: Organizing knowledge : the need for system and unity (2000) 0.00
    0.004101291 = product of:
      0.008202582 = sum of:
        0.008202582 = product of:
          0.016405163 = sum of:
            0.016405163 = weight(_text_:a in 181) [ClassicSimilarity], result of:
              0.016405163 = score(doc=181,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.3089162 = fieldWeight in 181, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=181)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    The future of classification. Ed. R. Marcella u. A. Maltby
    Type
    a
  8. Foskett, A.C.: ¬The future of facetted classification (2000) 0.00
    0.00334869 = product of:
      0.00669738 = sum of:
        0.00669738 = product of:
          0.01339476 = sum of:
            0.01339476 = weight(_text_:a in 3162) [ClassicSimilarity], result of:
              0.01339476 = score(doc=3162,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.25222903 = fieldWeight in 3162, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3162)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    The future of classification. Ed. R. Marcella u. A. Maltby
    Type
    a
  9. McIlwaine, I.C.: ¬A question of place (2004) 0.00
    0.0031642143 = product of:
      0.0063284286 = sum of:
        0.0063284286 = product of:
          0.012656857 = sum of:
            0.012656857 = weight(_text_:a in 2650) [ClassicSimilarity], result of:
              0.012656857 = score(doc=2650,freq=28.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.23833402 = fieldWeight in 2650, product of:
                  5.2915025 = tf(freq=28.0), with freq of:
                    28.0 = termFreq=28.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2650)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper looks at the problems raised by maintaining an Area Table in a general scheme of classification. It examines the tools available to assist in producing a standardized listing and demonstrates how recent developments in the Universal Decimal Classification enable users to have a retrieval tool suitable for use in a networked environment which acts as both a gazetteer and a classification.
    Content
    1. Introduction The representation of place in classification schemes presents a number of problems. This paper examines some of them and presents different ways in which a solution may be sought. Firstly, what is meant by place? The simple answer is a geographical area, large or small. The reality is not so simple. Place, or Topos to Aristotle was more than just an area, it was a state of mind. But even staying an the less philosophical plane, the way in which a place can be expressed is infinitely variable. Toponymy is a well defined field of study, comparable with taxonomy in the biological sciences. It comprehends the proper name by which any geographical entity is known, and part of the world, feature of earth's surface, organic aggregate (reef, forest) an organizational unit (country, borough, diocese), limits of Earth (poles, hemispheres) parts of Earth (oceans, continents), lakes, mountain passes, capital cities or sea parts.
    Type
    a
  10. Beghtol, C.: ¬The facet concept as a universal principle of subdivision (2006) 0.00
    0.0031324127 = product of:
      0.0062648254 = sum of:
        0.0062648254 = product of:
          0.012529651 = sum of:
            0.012529651 = weight(_text_:a in 1483) [ClassicSimilarity], result of:
              0.012529651 = score(doc=1483,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.23593865 = fieldWeight in 1483, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1483)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Facet analysis has been one of the foremost contenders as a design principle for information retrieval classifications, both manual and electronic in the last fifty years. Evidence is presented that the facet concept has a claim to be considered as a method of subdivision that is cognitively available to human beings, regardless of language, culture, or academic discipline. The possibility that faceting is a universal method of subdivision enhances the claim that facet analysis as an unusually useful design principle for information retrieval classifications in any field. This possibility needs further investigation in an age when information access across boundaries is both necessary and possible.
    Source
    Knowledge organization, information systems and other essays: Professor A. Neelameghan Festschrift. Ed. by K.S. Raghavan and K.N. Prasad
    Type
    a
  11. Thellefsen, M.; Thellefsen, T.: Pragmatic semiotics and knowledge organization (2004) 0.00
    0.0029000505 = product of:
      0.005800101 = sum of:
        0.005800101 = product of:
          0.011600202 = sum of:
            0.011600202 = weight(_text_:a in 3535) [ClassicSimilarity], result of:
              0.011600202 = score(doc=3535,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21843673 = fieldWeight in 3535, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3535)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The present paper presents a philosophical approach to knowledge organization, proposing the pragmatic doctrine of C.S. Peirce as basic analytical framework for knowledge domains. The theoretical framework discussed is related to the qualitative brauch of knowledge organization theory 1.e. within scope of Hjoerland's domain analytical view (Hjoerland and Albrechtsen 1995; Hjoerland 2002; Hjoerland 2004), and promote a general framework for analyzing domain knowledge and concepts. However, the concept of knowledge organization can be viewed in at least two perspectives, one that defines knowledge organization as an activity performed by a human actor e.g. an information specialist, and secondly a view that has the perspective of the inherent self-organizing structure of a knowledge domain the latter being investigated in the paper.
    Type
    a
  12. Paling, S.: Classification, rhetoric, and the classificatory horizon (2004) 0.00
    0.0029000505 = product of:
      0.005800101 = sum of:
        0.005800101 = product of:
          0.011600202 = sum of:
            0.011600202 = weight(_text_:a in 836) [ClassicSimilarity], result of:
              0.011600202 = score(doc=836,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21843673 = fieldWeight in 836, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=836)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Bibliography provides a compelling vantage from which to study the interconnection of classification, rhetoric, and the making of knowledge. Bibliography, and the related activities of classification and retrieval, bears a direct relationship to textual studies and rhetoric. The paper examines this relationship by briefly tracing the development of bibliography forward into issues concomitant with the emergence of classification for retrieval. A striking similarity to problems raised in rhetoric and which spring from common concerns and intellectual sources is demonstrated around Gadamer's notion of intellectual horizon. Classification takes place within a horizon of material conditions and social constraints that are best viewed through a hermeneutic or deconstructive lens, termed the "classificatory horizon."
    Type
    a
  13. McIlwaine, I.C.: Where have all the flowers gone? : An investigation into the fate of some special classification schemes (2003) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 2764) [ClassicSimilarity], result of:
              0.011481222 = score(doc=2764,freq=36.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 2764, product of:
                  6.0 = tf(freq=36.0), with freq of:
                    36.0 = termFreq=36.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2764)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Prior to the OPAC many institutions devised classifications to suit their special needs. Others expanded or altered general schemes to accommodate specific approaches. A driving force in the creation of these classifications was the Classification Research Group, celebrating its golden jubilee in 2002, whose work created a framework and body of principles that remain valid for the retrieval needs of today. The paper highlights some of these special schemes and highlights the fundamental principles which remain valid. 1. Introduction The distinction between a general and a special classification scheme is made frequently in the textbooks, but is one that it is sometimes difficult to draw. The Library of Congress classification could be described as the special classification par excellence. Normally, however, a special classification is taken to be one that is restricted to a specific subject, and quite often used in one specific context only, either a library or a bibliographic listing or for a specific purpose such as a search engine and it is in this sense that I propose to examine some of these schemes. Today, there is a widespread preference for searching an words as a supplement to the use of a standard system, usually the Dewey Decimal Classification (DDC). This is enhanced by the ability to search documents full-text in a computerized environment, a situation that did not exist 20 or 30 years ago. Today's situation is a great improvement in many ways, but it does depend upon the words used by the author and the searcher corresponding, and often presupposes the use of English. In libraries, the use of co-operative services and precatalogued records already provided with classification data has also spelt the demise of the special scheme. In many instances, the survival of a special classification depends upon its creaior and, with the passage of time, this becomes inevitably more precarious.
    Type
    a
  14. McIlwaine, I.C.; Williamson, N.J.: ¬A question of place (2004) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 3751) [ClassicSimilarity], result of:
              0.011481222 = score(doc=3751,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 3751, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3751)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  15. Kublik, A.; Clevette, V.; Ward, D.; Olson, H.A.: Adapting dominant classifications to particular contexts (2003) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 5516) [ClassicSimilarity], result of:
              0.011481222 = score(doc=5516,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 5516, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5516)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper addresses the process of adapting to a particular culture or context a classification that has grown out of western culture to become a global standard. The authors use a project that adapts DDC for use in a feminist/women's issues context to demonstrate an approach that works. The project is particularly useful as an interdisciplinary example. Discussion consists of four parts: (1) definition of the problem indicating the need for adaptation and efforts to date; (2) description of the methodology developed for creating an expansion; (3) description of the interface developed for actually doing the work, with its potential for a distributed group to work on it together (could even be internationally distributed); and (4) generalization of how the methodology could be used for particular contexts by country, ethnicity, perspective or other defining factors.
    Type
    a
  16. Beghtol, C.: Relationships in classificatory structure and meaning (2001) 0.00
    0.0026849252 = product of:
      0.0053698504 = sum of:
        0.0053698504 = product of:
          0.010739701 = sum of:
            0.010739701 = weight(_text_:a in 1138) [ClassicSimilarity], result of:
              0.010739701 = score(doc=1138,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20223314 = fieldWeight in 1138, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1138)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In a changing information environment, we need to reassess each element of bibliographic control, including classification theories and systems. Every classification system is a theoretical construct imposed an "reality." The classificatory relationships that are assumed to be valuable have generally received less attention than the topics included in the systems. Relationships are functions of both the syntactic and semantic axes of classification systems, and both explicit and implicit relationships are discussed. Examples are drawn from a number of different systems, both bibliographic and non-bibliographic, and the cultural warrant (i. e., the sociocultural context) of classification systems is examined. The part-whole relationship is discussed as an example of a universally valid concept that is treated as a component of the cultural warrant of a classification system.
    Type
    a
  17. Broughton, V.: Faceted classification as a basis for knowledge organization in a digital environment : the Bliss Bibliographic Classification as a model for vocabulary management and the creation of multidimensional knowledge structures (2003) 0.00
    0.0026849252 = product of:
      0.0053698504 = sum of:
        0.0053698504 = product of:
          0.010739701 = sum of:
            0.010739701 = weight(_text_:a in 2631) [ClassicSimilarity], result of:
              0.010739701 = score(doc=2631,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20223314 = fieldWeight in 2631, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2631)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The paper examines the way in which classification schemes can be applied to the organization of digital resources. The case is argued for the particular suitability of schemes based an faceted principles for the organization of complex digital objects. Details are given of a co-operative project between the School of Library Archive & Information Studies, University College London, and the United Kingdom Higher Education gateways Arts and Humanities Data Service and Humbul, in which a faceted knowledge structure is being developed for the indexing and display of digital materials within a new combined humanities portal.
    Type
    a
  18. Albrechtsen, H.; Pejtersen, A.M.: Cognitive work analysis and work centered design of classification schemes (2003) 0.00
    0.0026849252 = product of:
      0.0053698504 = sum of:
        0.0053698504 = product of:
          0.010739701 = sum of:
            0.010739701 = weight(_text_:a in 3005) [ClassicSimilarity], result of:
              0.010739701 = score(doc=3005,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20223314 = fieldWeight in 3005, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3005)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Work centered design of classification schemes is an emerging area of research which poses particular challenges to domain analysis and scheme construction. A key challenge in work centered design of classification schemes is the evolving semantics of work. This article introduces a work centered approach to the design of classification schemes, based an the framework of cognitive work analysis. We launch collaborative task situations as a new unit of analysis for capturing evolving semantic structures in work domains. An example case from a cognitive work analysis of three national film research archives illustrates the application of the framework for identifying actors' needs for a classification scheme to support collaborative knowledge integration. It is concluded that a main contribution of the new approach is support for empirical analysis and overall design of classification schemes that can serve as material interfaces for actors' negotiations and integration of knowledge perspectives during collaborative work.
    Type
    a
  19. Gnoli, C.: Phylogenetic classification (2006) 0.00
    0.0026849252 = product of:
      0.0053698504 = sum of:
        0.0053698504 = product of:
          0.010739701 = sum of:
            0.010739701 = weight(_text_:a in 164) [ClassicSimilarity], result of:
              0.010739701 = score(doc=164,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20223314 = fieldWeight in 164, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=164)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    One general principle in the construction of classification schemes is that of grouping phenomena to be classified according to their shared origin in evolution or history (phylogenesis). In general schemes, this idea has been applied by several classificationists in identifying a series of integrative levels, each originated from the previous ones, and using them as the main classes. In special schemes, common origin is a key principle in many domains: examples are given from the classification of climates, of organisms, and of musical instruments. Experience from these domains, however, suggests that using common origin alone, as done in cladistic taxonomy, can produce weird results, like having birds as a subclass of reptiles; while the most satisfying classifications use a well balanced mix of common origin and similarity. It is discussed how this could be applied to the development of a general classification of phenomena in an emergentist perspective, and how the resulting classification tree could be structured. Charles Bennett's notion of logical depth appears to be a promising conceptual tool for this purpose.
    Type
    a
  20. Gnoli, C.; Mei, H.: Freely faceted classification for Web-based information retrieval (2006) 0.00
    0.0026849252 = product of:
      0.0053698504 = sum of:
        0.0053698504 = product of:
          0.010739701 = sum of:
            0.010739701 = weight(_text_:a in 534) [ClassicSimilarity], result of:
              0.010739701 = score(doc=534,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20223314 = fieldWeight in 534, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=534)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In free classification, each concept is expressed by a constant notation, and classmarks are formed by free combinations of them, allowing the retrieval of records from a database by searching any of the component concepts. A refinement of free classification is freely faceted classification, where notation can include facets, expressing the kind of relations held between the concepts. The Integrative Level Classification project aims at testing free and freely faceted classification by applying them to small bibliographical samples in various domains. A sample, called the Dandelion Bibliography of Facet Analysis, is described here. Experience was gained using this system to classify 300 specialized papers dealing with facet analysis itself recorded on a MySQL database and building a Web interface exploiting freely faceted notation. The interface is written in PHP and uses string functions to process the queries and to yield relevant results selected and ordered according to the principles of integrative levels.
    Type
    a

Languages

  • e 80
  • chi 1
  • i 1
  • More… Less…

Types

  • a 69
  • m 8
  • el 4
  • s 2
  • b 1
  • More… Less…