Search (52 results, page 1 of 3)

  • × theme_ss:"Referieren"
  • × language_ss:"e"
  1. Koltay, T.: ¬A hypertext tutorial on abstracting for library science students (1995) 0.04
    0.037059225 = product of:
      0.07411845 = sum of:
        0.07411845 = sum of:
          0.011717974 = weight(_text_:a in 3061) [ClassicSimilarity], result of:
            0.011717974 = score(doc=3061,freq=6.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.22065444 = fieldWeight in 3061, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.078125 = fieldNorm(doc=3061)
          0.06240048 = weight(_text_:22 in 3061) [ClassicSimilarity], result of:
            0.06240048 = score(doc=3061,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.38690117 = fieldWeight in 3061, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.078125 = fieldNorm(doc=3061)
      0.5 = coord(1/2)
    
    Abstract
    Discusses briefly the application of hypertext in library user training with particular reference to a specific hypertext based tutorial designed to teach library school students the basics knowledge of abstracts and abstracting process
    Date
    27. 1.1996 18:22:06
    Type
    a
  2. Palais, E.S.: Abstracting for reference librarians (1988) 0.03
    0.02964738 = product of:
      0.05929476 = sum of:
        0.05929476 = sum of:
          0.009374379 = weight(_text_:a in 2832) [ClassicSimilarity], result of:
            0.009374379 = score(doc=2832,freq=6.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.17652355 = fieldWeight in 2832, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0625 = fieldNorm(doc=2832)
          0.04992038 = weight(_text_:22 in 2832) [ClassicSimilarity], result of:
            0.04992038 = score(doc=2832,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.30952093 = fieldWeight in 2832, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=2832)
      0.5 = coord(1/2)
    
    Abstract
    Reference librarians, who are thoroughly familiar with the purpose, scope and arrangement of abstract periodicals, are uniquely qualified for the task of writing abstracts. The procedures described here offer a relatively simple way for them to write acceptable abstracts from the outset. Although research is being conducted in the area of machine generated abstracts, there wll continue to be a role for human abstractors.
    Source
    Reference librarian. 1988, no.22, S.297-308
    Type
    a
  3. Hartley, J.; Sydes, M.: Which layout do you prefer? : an analysis of readers' preferences for different typographic layouts of structured abstracts (1996) 0.02
    0.022779368 = product of:
      0.045558736 = sum of:
        0.045558736 = sum of:
          0.008118451 = weight(_text_:a in 4411) [ClassicSimilarity], result of:
            0.008118451 = score(doc=4411,freq=8.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.15287387 = fieldWeight in 4411, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=4411)
          0.037440285 = weight(_text_:22 in 4411) [ClassicSimilarity], result of:
            0.037440285 = score(doc=4411,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 4411, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4411)
      0.5 = coord(1/2)
    
    Abstract
    Structured abstracts are abstracts which include subheadings such as: background, aims, participants methods and results. These are rapidly replacing traditional abstracts in medical periodicals, but the number and detail of the subheadings used varies, and there is a range of different typographic settings. Reviews a number of studies designed to investigate readers' preferences for different typographic settings and layout. Over 400 readers took part in the study: students; postgraduates; research workers and academics in the social sciences. The most preferred version emerged from the last of 3 studies and 2 additional studies were then carried out to determine preferences for the overall position and layout of this most preferred version on a A4 page. The most preferred version for the setting of the subheadings are printed in bold capital letters
    Source
    Journal of information science. 22(1996) no.1, S.27-37
    Type
    a
  4. Ward, M.L.: ¬The future of the human indexer (1996) 0.02
    0.022235535 = product of:
      0.04447107 = sum of:
        0.04447107 = sum of:
          0.007030784 = weight(_text_:a in 7244) [ClassicSimilarity], result of:
            0.007030784 = score(doc=7244,freq=6.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.13239266 = fieldWeight in 7244, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=7244)
          0.037440285 = weight(_text_:22 in 7244) [ClassicSimilarity], result of:
            0.037440285 = score(doc=7244,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 7244, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=7244)
      0.5 = coord(1/2)
    
    Abstract
    Considers the principles of indexing and the intellectual skills involved in order to determine what automatic indexing systems would be required in order to supplant or complement the human indexer. Good indexing requires: considerable prior knowledge of the literature; judgement as to what to index and what depth to index; reading skills; abstracting skills; and classification skills, Illustrates these features with a detailed description of abstracting and indexing processes involved in generating entries for the mechanical engineering database POWERLINK. Briefly assesses the possibility of replacing human indexers with specialist indexing software, with particular reference to the Object Analyzer from the InTEXT automatic indexing system and using the criteria described for human indexers. At present, it is unlikely that the automatic indexer will replace the human indexer, but when more primary texts are available in electronic form, it may be a useful productivity tool for dealing with large quantities of low grade texts (should they be wanted in the database)
    Date
    9. 2.1997 18:44:22
    Type
    a
  5. Hartley, J.; Sydes, M.; Blurton, A.: Obtaining information accurately and quickly : are structured abstracts more efficient? (1996) 0.02
    0.01938208 = product of:
      0.03876416 = sum of:
        0.03876416 = sum of:
          0.0075639198 = weight(_text_:a in 7673) [ClassicSimilarity], result of:
            0.0075639198 = score(doc=7673,freq=10.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.14243183 = fieldWeight in 7673, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=7673)
          0.03120024 = weight(_text_:22 in 7673) [ClassicSimilarity], result of:
            0.03120024 = score(doc=7673,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 7673, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=7673)
      0.5 = coord(1/2)
    
    Abstract
    Reports results of 2 studies to determine if structured abstracts offer any advantage to users in terms of whether they are easier to search. In study 1, using a specially prepared electronic database of abstracts in either their original format or the structured format, 52 users were asked to find the answers to 2 questions for each of 8 abstracts in traditional format followed by 2 questions for each of 8 abstracts set in the structured format. Time and error data were recorded automatically. In study 2, using a printed database, 56 users were asked to to find 5 abstracts that reprted a particular kind of study and then find 5 more references that reported another kind of study. In study 1 users performed significantly faster and made fewer errors with structured abstracts but there were some unexplainable practice effects. In study 2, the users again performed significantly faster and made fewer errors with structured abstracts. However, there were asymmetrical transfer effects: users who responded first to the structured abstracts responded more quickly to the following traditional abstracts than did those users who responded first to the traditional abstracts. Nevertheless, the overall findings support the hypothesis that it is easier for user to search structured abstracts than it is to search traditional abstracts
    Source
    Journal of information science. 22(1996) no.5, S.349-356
    Type
    a
  6. Hutchins, J.: Summarization: some problems and methods (1987) 0.00
    0.003827074 = product of:
      0.007654148 = sum of:
        0.007654148 = product of:
          0.015308296 = sum of:
            0.015308296 = weight(_text_:a in 2738) [ClassicSimilarity], result of:
              0.015308296 = score(doc=2738,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.28826174 = fieldWeight in 2738, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=2738)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Informatics 9: Meaning: the frontier of informatics: proceedings of a conference. Ed.: K.P. Jones
    Type
    a
  7. Booth, A.; O'Rouke, A.J.: ¬The value of structured abstracts in information retrieval from MEDLINE (1997) 0.00
    0.0030255679 = product of:
      0.0060511357 = sum of:
        0.0060511357 = product of:
          0.012102271 = sum of:
            0.012102271 = weight(_text_:a in 764) [ClassicSimilarity], result of:
              0.012102271 = score(doc=764,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22789092 = fieldWeight in 764, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=764)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Presents a structured abstract of the actual article. Outlines the debate on the value of structured abstracts and describes a research project into their use, which investigated records of cardiovascular disease downloaded from MEDLINE and tested against clinical questions derived from a survey of CD-ROM use in 3 health science libraries. It was found that structured abstracts improve precision at the expense of recall and place heavier demands on the skills of selecting fields to search within the abstract. Indicates directions for further research
    Type
    a
  8. Endres-Niggemeyer, B.: Content analysis : a special case of text compression (1989) 0.00
    0.0029294936 = product of:
      0.005858987 = sum of:
        0.005858987 = product of:
          0.011717974 = sum of:
            0.011717974 = weight(_text_:a in 3549) [ClassicSimilarity], result of:
              0.011717974 = score(doc=3549,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22065444 = fieldWeight in 3549, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3549)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Presents a theoretical model, based on the Flower/Hayes model of expository writing, of the process involved in content analysis for abstracting and indexing.
    Type
    a
  9. Borko, H.; Chatman, S.: Criteria for acceptable abstracts : a survey of abstractors' instructions (1963) 0.00
    0.0029000505 = product of:
      0.005800101 = sum of:
        0.005800101 = product of:
          0.011600202 = sum of:
            0.011600202 = weight(_text_:a in 687) [ClassicSimilarity], result of:
              0.011600202 = score(doc=687,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21843673 = fieldWeight in 687, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=687)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The need for criteria by which to judge the adequacy of an abstract is felt most strongly when evaluating machine-produced abstracts. In order to develop a set of criteria, a survey was conducted of the instructions prepared by various scientific publications as a guide to their abstracters in the preparation of copy. One-hundred-and-thirty sets of instructions were analyzed and compared as to their function, content, and form. It was concluded that, while differences in subject matter do not necessarily require different kinds of abstracts, there are significant variations between the informative and the indicative abstract. A set of criteria for the writing of an acceptable abstract of science literature was derived. The adequacy of these criteria is still to be validated, and the athors' plans for fututre research in this area are specified
    Type
    a
  10. Endres-Niggemeyer, B.; Maier, E.; Sigel, A.: How to implement a naturalistic model of abstracting : four core working steps of an expert abstractor (1995) 0.00
    0.0029000505 = product of:
      0.005800101 = sum of:
        0.005800101 = product of:
          0.011600202 = sum of:
            0.011600202 = weight(_text_:a in 2930) [ClassicSimilarity], result of:
              0.011600202 = score(doc=2930,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21843673 = fieldWeight in 2930, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2930)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    4 working steps taken from a comprehensive empirical model of expert abstracting are studied in order to prepare an explorative implementation of a simulation model. It aims at explaining the knowledge processing activities during professional summarizing. Following the case-based and holistic strategy of qualitative empirical research, the main features of the simulation system were developed by investigating in detail a small but central test case - 4 working steps where an expert abstractor discovers what the paper is about and drafts the topic sentence of the abstract
    Type
    a
  11. Armstrong, C.J.; Wheatley, A.: Writing abstracts for online databases : results of database producers' guidelines (1998) 0.00
    0.0029000505 = product of:
      0.005800101 = sum of:
        0.005800101 = product of:
          0.011600202 = sum of:
            0.011600202 = weight(_text_:a in 3295) [ClassicSimilarity], result of:
              0.011600202 = score(doc=3295,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21843673 = fieldWeight in 3295, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3295)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Reports on one area of research in an Electronic Libraries Programme (eLib) MODELS (MOving to Distributed Environments for Library Services) supporting study in 3 investigative areas: examination of current database producers' guidelines for their abstract writers; a brief survey of abstracts in some traditional online databases; and a detailed survey of abstracts from 3 types of electronic database (print sourced online databases, Internet subject trees or directories, and Internet gateways). Examination of database producers' guidelines, reported here, gave a clear view of the intentions behind professionally produced traditional (printed index based) database abstracts and provided a benchmark against which to judge the conclusions of the larger investigations into abstract style, readability and content
    Type
    a
  12. Endres-Niggemeyer, B.: ¬An empirical process model of abstracting (1992) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 8834) [ClassicSimilarity], result of:
              0.011481222 = score(doc=8834,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 8834, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=8834)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Mensch und Maschine: Informationelle Schnittstellen der Kommunikation. Proc. des 3. Int. Symposiums für Informationswissenschaft (ISI'92), 5.-7.11.1992 in Saarbrücken. Hrsg.: H.H. Zimmermann, H.-D. Luckhardt u. A. Schulz
    Type
    a
  13. Fidel, R.: Writing abstracts for free-text searching (1986) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 684) [ClassicSimilarity], result of:
              0.0108246 = score(doc=684,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 684, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=684)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A survey of abstracting policies by producers of bibliographical databases examined abstracting guidelines which aim to enhance free- text retrieval. Of the 123 database policies examined, fifty-seven (46 per cent) included such instructions. Editors consider contents of abstracts and their language as a primary factor in retrieval enhancement. Most recommend that once abstractors decide which concepts to include in abstracts and in which form to represent them, these terms should be co-ordinated with index terms assigned from a controlled vocabulary. Guidelines about the type of abstracts, i.e., informative or indicative, and about their length are not affected by the capability of free-text retrieval
    Type
    a
  14. Molina, M.P.: Documentary abstracting : toward a methodological approach (1995) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 1790) [ClassicSimilarity], result of:
              0.0108246 = score(doc=1790,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 1790, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1790)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In the general abstracting process (GAP), there are 2 types of data: textual, within a particular framed trilogy (surface, deep, and rhetoric); and documentary (abstractor, means of production, and user demands). Proposes its development, the use of the following disciplines, among others: linguistics (structural, tranformational, and textual), logic (formal and fuzzy), and psychology (cognitive). The model for that textual transformation is based on a system of combined strategies with 4 key stages: reading understanding, selection, interpretation, and synthesis
    Type
    a
  15. Hartley, J.: Is it appropriate to use structured abstracts in non-medical science journals? (1998) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 2999) [ClassicSimilarity], result of:
              0.0108246 = score(doc=2999,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 2999, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2999)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Reports results of a study to consider whether or not structured abstracts can be used efectively in non medical science periodicals. Reviews a selection of studies on structured abstracts from the medical and psychological literature, presents examples of structured abstracts published in non medical science periodicals and considers how original abstracts might be written in a structured form for these periodicals. Concludes that, in light of these example studies, editors of these periodicals should consider the value of adopting structured abstracts
    Type
    a
  16. McIntosh, N.: Structured abstracts and information transfer (1994) 0.00
    0.0026849252 = product of:
      0.0053698504 = sum of:
        0.0053698504 = product of:
          0.010739701 = sum of:
            0.010739701 = weight(_text_:a in 728) [ClassicSimilarity], result of:
              0.010739701 = score(doc=728,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20223314 = fieldWeight in 728, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=728)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Reports results of a study, conducted by the European Society of Paediatric Research (ESPR), to determine whether the information content of structured medical abstracts is greater than abstracts with traditional format and whether the efficacy of peer review is improved by the use of structured medical abstracts. The sample studied comprised the abstracts of papers submitted for the ESPR annual meeting and each abstract was assessed by a research worker by a research worker for information content by referring to a list of criteria. The words in each abstract were counted to obtain the information density of each and the abstracts were evaluated according to whether they were in an unstructured format, a semistructured format, or a more fully structured format. Although there was no significant difference in the scientific score of the scientific information density of the different formats there was significantly more information in the fully structured format. When the abstracts were resubmitted in structured format, there was always a highly significant increase in the information content
  17. Wilson, M.J.; Wilson, M.L.: ¬A comparison of techniques for measuring sensemaking and learning within participant-generated summaries (2013) 0.00
    0.0026742492 = product of:
      0.0053484985 = sum of:
        0.0053484985 = product of:
          0.010696997 = sum of:
            0.010696997 = weight(_text_:a in 612) [ClassicSimilarity], result of:
              0.010696997 = score(doc=612,freq=20.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20142901 = fieldWeight in 612, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=612)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    While it is easy to identify whether someone has found a piece of information during a search task, it is much harder to measure how much someone has learned during the search process. Searchers who are learning often exhibit exploratory behaviors, and so current research is often focused on improving support for exploratory search. Consequently, we need effective measures of learning to demonstrate better support for exploratory search. Some approaches, such as quizzes, measure recall when learning from a fixed source of information. This research, however, focuses on techniques for measuring open-ended learning, which often involve analyzing handwritten summaries produced by participants after a task. There are two common techniques for analyzing such summaries: (a) counting facts and statements and (b) judging topic coverage. Both of these techniques, however, can be easily confounded by simple variables such as summary length. This article presents a new technique that measures depth of learning within written summaries based on Bloom's taxonomy (B.S. Bloom & M.D. Engelhart, 1956). This technique was generated using grounded theory and is designed to be less susceptible to such confounding variables. Together, these three categories of measure were compared by applying them to a large collection of written summaries produced in a task-based study, and our results provide insights into each of their strengths and weaknesses. Both fact-to-statement ratio and our own measure of depth of learning were effective while being less affected by confounding variables. Recommendations and clear areas of future work are provided to help continued research into supporting sensemaking and learning.
    Type
    a
  18. Rothkegel, A.: Abstracting from the perspective of text production (1995) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 3740) [ClassicSimilarity], result of:
              0.010589487 = score(doc=3740,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 3740, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3740)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    An abstract itself is a text which is subjected to general and specific conditions of text production. The goal - namely the forming of the abstract as a text - controls the whole process of abstracting. This goal oriented view contrasts to most approaches in this domain which are source text oriented. Production strategies are described in terms of text structure building processes which are reconstructed with methods of modelling in the area of text linguistics and computational linguistics. This leads to a close relationship between thr representation of the model and the resulting text. Gives examples in which authentic material of abstracts is analyzed according to the model. The model itself integrates 3 text levels which are combined and represented in terms of the writer's activities
    Type
    a
  19. Spiteri, L.F.: Library and information science vs business : a comparison of approaches to abstracting (1997) 0.00
    0.0026473717 = product of:
      0.0052947435 = sum of:
        0.0052947435 = product of:
          0.010589487 = sum of:
            0.010589487 = weight(_text_:a in 3699) [ClassicSimilarity], result of:
              0.010589487 = score(doc=3699,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19940455 = fieldWeight in 3699, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3699)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The library and information science (LIS) literature on abstracting makes little mention about abstracting conducted in the corporate / business environment, whereas the business literature suggests that abstarcting is a very important component of business writing. Examines a variety of publications from LIS and business in order to compare and contrast their approaches to the following aspects of abstracting: definitions of abstracts; types of abstracts; purpose of abstracts; and writing of abstracts. Summarises the results of the examination which revealed a number of similarities, differences, and inadequacies in the ways in which both fields approach abstracting. Concludes that both fields need to develop more detailed guidelines concerning the cognitive process of abstracting and suggests improvements to the training af absractors based on these findings
    Type
    a
  20. Hartley, J.; Betts, L.: Revising and polishing a structured abstract : is it worth the time and effort? (2008) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 2362) [ClassicSimilarity], result of:
              0.009567685 = score(doc=2362,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 2362, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2362)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Many writers of structured abstracts spend a good deal of time revising and polishing their texts - but is it worth it? Do readers notice the difference? In this paper we report three studies of readers using rating scales to judge (electronically) the clarity of an original and a revised abstract, both as a whole and in its constituent parts. In Study 1, with approximately 250 academics and research workers, we found some significant differences in favor of the revised abstract, but in Study 2, with approximately 210 information scientists, we found no significant effects. Pooling the data from Studies 1 and 2, however, in Study 3, led to significant differences at a higher probability level between the perception of the original and revised abstract as a whole and between the same components as found in Study 1. These results thus indicate that the revised abstract as a whole, as well as certain specific components of it, were judged significantly clearer than the original one. In short, the results of these experiments show that readers can and do perceive differences between original and revised texts - sometimes - and that therefore these efforts are worth the time and effort.
    Type
    a

Years

Types

  • a 45
  • m 4
  • r 2
  • s 1
  • More… Less…

Classifications