Search (13 results, page 1 of 1)

  • × theme_ss:"Social tagging"
  • × type_ss:"el"
  1. Danowski, P.: Authority files and Web 2.0 : Wikipedia and the PND. An Example (2007) 0.02
    0.018982807 = product of:
      0.037965614 = sum of:
        0.037965614 = sum of:
          0.006765375 = weight(_text_:a in 1291) [ClassicSimilarity], result of:
            0.006765375 = score(doc=1291,freq=8.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.12739488 = fieldWeight in 1291, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1291)
          0.03120024 = weight(_text_:22 in 1291) [ClassicSimilarity], result of:
            0.03120024 = score(doc=1291,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 1291, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1291)
      0.5 = coord(1/2)
    
    Abstract
    More and more users index everything on their own in the web 2.0. There are services for links, videos, pictures, books, encyclopaedic articles and scientific articles. All these services are library independent. But must that really be? Can't libraries help with their experience and tools to make user indexing better? On the experience of a project from German language Wikipedia together with the German person authority files (Personen Namen Datei - PND) located at German National Library (Deutsche Nationalbibliothek) I would like to show what is possible. How users can and will use the authority files, if we let them. We will take a look how the project worked and what we can learn for future projects. Conclusions - Authority files can have a role in the web 2.0 - there must be an open interface/ service for retrieval - everything that is indexed on the net with authority files can be easy integrated in a federated search - O'Reilly: You have to found ways that your data get more important that more it will be used
    Content
    Vortrag anlässlich des Workshops: "Extending the multilingual capacity of The European Library in the EDL project Stockholm, Swedish National Library, 22-23 November 2007".
  2. Hammond, T.; Hannay, T.; Lund, B.; Flack, M.: Social bookmarking tools (II) : a case study - Connotea (2005) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 1189) [ClassicSimilarity], result of:
              0.010148063 = score(doc=1189,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 1189, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1189)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Connotea is a free online reference management and social bookmarking service for scientists created by Nature Publishing Group. While somewhat experimental in nature, Connotea already has a large and growing number of users, and is a real, fully functioning service. The label 'experimental' is not meant to imply that the service is any way ephemeral or esoteric, rather that the concept of social bookmarking itself and the application of that concept to reference management are both recent developments. Connotea is under active development, and we are still in the process of discovering how people will use it. In addition to Connotea being a free and public service, the core code is freely available under an open source license. Connotea was conceived from the outset as an online, social tool. Seeing the possibilities that del.icio.us was opening up for its users in the area of general web linking, we realised that scholarly reference management was a similar problem space. Connotea was designed and developed late in 2004, and soft-launched at the end of December 2004. Usage has grown over the past several months, to the point where there is now enough data in the system for interesting second-order effects to emerge. This paper will start by giving an overview of Connotea, and will outline the key concepts and describe its main features. We will then take the reader on a brief guided tour, show some of the aforementioned second-order effects, and end with a discussion of Connotea's likely future direction.
    Type
    a
  3. Hammond, T.; Hannay, T.; Lund, B.; Scott, J.: Social bookmarking tools (I) : a general review (2005) 0.00
    0.0025115174 = product of:
      0.0050230348 = sum of:
        0.0050230348 = product of:
          0.0100460695 = sum of:
            0.0100460695 = weight(_text_:a in 1188) [ClassicSimilarity], result of:
              0.0100460695 = score(doc=1188,freq=36.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18917176 = fieldWeight in 1188, product of:
                  6.0 = tf(freq=36.0), with freq of:
                    36.0 = termFreq=36.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1188)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Because, to paraphrase a pop music lyric from a certain rock and roll band of yesterday, "the Web is old, the Web is new, the Web is all, the Web is you", it seems like we might have to face up to some of these stark realities. With the introduction of new social software applications such as blogs, wikis, newsfeeds, social networks, and bookmarking tools (the subject of this paper), the claim that Shelley Powers makes in a Burningbird blog entry seems apposite: "This is the user's web now, which means it's my web and I can make the rules." Reinvention is revolution - it brings us always back to beginnings. We are here going to remind you of hyperlinks in all their glory, sell you on the idea of bookmarking hyperlinks, point you at other folks who are doing the same, and tell you why this is a good thing. Just as long as those hyperlinks (or let's call them plain old links) are managed, tagged, commented upon, and published onto the Web, they represent a user's own personal library placed on public record, which - when aggregated with other personal libraries - allows for rich, social networking opportunities. Why spill any ink (digital or not) in rewriting what someone else has already written about instead of just pointing at the original story and adding the merest of titles, descriptions and tags for future reference? More importantly, why not make these personal 'link playlists' available to oneself and to others from whatever browser or computer one happens to be using at the time? This paper reviews some current initiatives, as of early 2005, in providing public link management applications on the Web - utilities that are often referred to under the general moniker of 'social bookmarking tools'. There are a couple of things going on here: 1) server-side software aimed specifically at managing links with, crucially, a strong, social networking flavour, and 2) an unabashedly open and unstructured approach to tagging, or user classification, of those links.
    A number of such utilities are presented here, together with an emergent new class of tools that caters more to the academic communities and that stores not only user-supplied tags, but also structured citation metadata terms wherever it is possible to glean this information from service providers. This provision of rich, structured metadata means that the user is provided with an accurate third-party identification of a document, which could be used to retrieve that document, but is also free to search on user-supplied terms so that documents of interest (or rather, references to documents) can be made discoverable and aggregated with other similar descriptions either recorded by the user or by other users. Matt Biddulph in an XML.com article last year, in which he reviews one of the better known social bookmarking tools, del.icio.us, declares that the "del.icio.us-space has three major axes: users, tags, and URLs". We fully support that assessment but choose to present this deconstruction in a reverse order. This paper thus first recaps a brief history of bookmarks, then discusses the current interest in tagging, moves on to look at certain social issues, and finally considers some of the feature sets offered by the new bookmarking tools. A general review of a number of common social bookmarking tools is presented in the annex. A companion paper describes a case study in more detail: the tool that Nature Publishing Group has made available to the scientific community as an experimental entrée into this field - Connotea; our reasons for endeavouring to provide such a utility; and experiences gained and lessons learned.
    Type
    a
  4. Wei, W.; Ram, S.: Utilizing sozial bookmarking tag space for Web content discovery : a social network analysis approach (2010) 0.00
    0.0024392908 = product of:
      0.0048785815 = sum of:
        0.0048785815 = product of:
          0.009757163 = sum of:
            0.009757163 = weight(_text_:a in 1) [ClassicSimilarity], result of:
              0.009757163 = score(doc=1,freq=26.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18373153 = fieldWeight in 1, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Social bookmarking has gained popularity since the advent of Web 2.0. Keywords known as tags are created to annotate web content, and the resulting tag space composed of the tags, the resources, and the users arises as a new platform for web content discovery. Useful and interesting web resources can be located through searching and browsing based on tags, as well as following the user-user connections formed in the social bookmarking community. However, the effectiveness of tag-based search is limited due to the lack of explicitly represented semantics in the tag space. In addition, social connections between users are underused for web content discovery because of the inadequate social functions. In this research, we propose a comprehensive framework to reorganize the flat tag space into a hierarchical faceted model. We also studied the structure and properties of various networks emerging from the tag space for the purpose of more efficient web content discovery. The major research approach used in this research is social network analysis (SNA), together with methodologies employed in design science research. The contribution of our research includes: (i) a faceted model to categorize social bookmarking tags; (ii) a relationship ontology to represent the semantics of relationships between tags; (iii) heuristics to reorganize the flat tag space into a hierarchical faceted model using analysis of tag-tag co-occurrence networks; (iv) an implemented prototype system as proof-of-concept to validate the feasibility of the reorganization approach; (v) a set of evaluations of the social functions of the current networking features of social bookmarking and a series of recommendations as to how to improve the social functions to facilitate web content discovery.
    Content
    A Dissertation Submitted to the Faculty of the COMMITTEE ON BUSINESS ADMINISTRATION In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN MANAGEMENT In the Graduate College THE UNIVERSITY OF ARIZONA. Vgl.: http://hdl.handle.net/10150/195123. Vgl. auch: https://www.semanticscholar.org/paper/Utilizing-social-bookmarking-tag-space-for-web-a-Ram-Wei/da9e7e5ee771008b741af7176d3f0d67128d1dca.
    Type
    a
  5. Shirky, C.: Ontology is overrated : categories, links, and tags (2005) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 1265) [ClassicSimilarity], result of:
              0.00894975 = score(doc=1265,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 1265, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1265)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Today I want to talk about categorization, and I want to convince you that a lot of what we think we know about categorization is wrong. In particular, I want to convince you that many of the ways we're attempting to apply categorization to the electronic world are actually a bad fit, because we've adopted habits of mind that are left over from earlier strategies. I also want to convince you that what we're seeing when we see the Web is actually a radical break with previous categorization strategies, rather than an extension of them. The second part of the talk is more speculative, because it is often the case that old systems get broken before people know what's going to take their place. (Anyone watching the music industry can see this at work today.) That's what I think is happening with categorization. What I think is coming instead are much more organic ways of organizing information than our current categorization schemes allow, based on two units -- the link, which can point to anything, and the tag, which is a way of attaching labels to links. The strategy of tagging -- free-form labeling, without regard to categorical constraints -- seems like a recipe for disaster, but as the Web has shown us, you can extract a surprising amount of value from big messy data sets.
    Footnote
    This piece is based on two talks I gave in the spring of 2005 -- one at the O'Reilly ETech conference in March, entitled "Ontology Is Overrated", and one at the IMCExpo in April entitled "Folksonomies & Tags: The rise of user-developed classification." The written version is a heavily edited concatenation of those two talks.
  6. Heckner, M.; Mühlbacher, S.; Wolff, C.: Tagging tagging : a classification model for user keywords in scientific bibliography management systems (2007) 0.00
    0.0021393995 = product of:
      0.004278799 = sum of:
        0.004278799 = product of:
          0.008557598 = sum of:
            0.008557598 = weight(_text_:a in 533) [ClassicSimilarity], result of:
              0.008557598 = score(doc=533,freq=20.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.16114321 = fieldWeight in 533, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=533)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Recently, a growing amount of systems that allow personal content annotation (tagging) are being created, ranging from personal sites for organising bookmarks (del.icio.us), photos (flickr.com) or videos (video.google.com, youtube.com) to systems for managing bibliographies for scientific research projects (citeulike.org, connotea.org). Simultaneously, a debate on the pro and cons of allowing users to add personal keywords to digital content has arisen. One recurrent point-of-discussion is whether tagging can solve the well-known vocabulary problem: In order to support successful retrieval in complex environments, it is necessary to index an object with a variety of aliases (cf. Furnas 1987). In this spirit, social tagging enhances the pool of rigid, traditional keywording by adding user-created retrieval vocabularies. Furthermore, tagging goes beyond simple personal content-based keywords by providing meta-keywords like funny or interesting that "identify qualities or characteristics" (Golder and Huberman 2006, Kipp and Campbell 2006, Kipp 2007, Feinberg 2006, Kroski 2005). Contrarily, tagging systems are claimed to lead to semantic difficulties that may hinder the precision and recall of tagging systems (e.g. the polysemy problem, cf. Marlow 2006, Lakoff 2005, Golder and Huberman 2006). Empirical research on social tagging is still rare and mostly from a computer linguistics or librarian point-of-view (Voß 2007) which focus either on the automatic statistical analyses of large data sets, or intellectually inspect single cases of tag usage: Some scientists studied the evolution of tag vocabularies and tag distribution in specific systems (Golder and Huberman 2006, Hammond 2005). Others concentrate on tagging behaviour and tagger characteristics in collaborative systems. (Hammond 2005, Kipp and Campbell 2007, Feinberg 2006, Sen 2006). However, little research has been conducted on the functional and linguistic characteristics of tags.1 An analysis of these patterns could show differences between user wording and conventional keywording. In order to provide a reasonable basis for comparison, a classification system for existing tags is needed.
    Therefore our main research questions are as follows: - Is it possible to discover regular patterns in tag usage and to establish a stable category model? - Does a specific tagging language comparable to internet slang or chatspeak evolve? - How do social tags differ from traditional (author / expert) keywords? - To what degree are social tags taken from or findable in the full text of the tagged resource? - Do tags in a research literature context go beyond simple content description (e.g. tags indicating time or task-related information, cf. Kipp et al. 2006)?
  7. Lee, Y.Y.; Yang, S.Q.: Folksonomies as subject access : a survey of tagging in library online catalogs and discovery layers (2012) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 309) [ClassicSimilarity], result of:
              0.008118451 = score(doc=309,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 309, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=309)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper describes a survey on how system vendors and libraries handled tagging in OPACs and discovery layers. Tags are user added subject metadata, also called folksonomies. This survey also investigated user behavior when they face the possibility to tag. The findings indicate that legacy/classic systems have no tagging capability. About 47% of the discovery tools provide tagging function. About 49% of the libraries that have a system with tagging capability have turned the tagging function on in their OPACs and discovery tools. Only 40% of the libraries that turned tagging on actually utilized user added subject metadata as access point to collections. Academic library users are less active in tagging than public library users.
    Type
    a
  8. Furner, J.: User tagging of library resources : toward a framework for system evaluation (2007) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 703) [ClassicSimilarity], result of:
              0.007030784 = score(doc=703,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 703, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=703)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Although user tagging of library resources shows substantial promise as a means of improving the quality of users' access to those resources, several important questions about the level and nature of the warrant for basing retrieval tools on user tagging are yet to receive full consideration by library practitioners and researchers. Among these is the simple evaluative question: What, specifically, are the factors that determine whether or not user-tagging services will be successful? If success is to be defined in terms of the effectiveness with which systems perform the particular functions expected of them (rather than simply in terms of popularity), an understanding is needed both of the multifunctional nature of tagging tools, and of the complex nature of users' mental models of that multifunctionality. In this paper, a conceptual framework is developed for the evaluation of systems that integrate user tagging with more traditional methods of library resource description.
  9. Tonkin, E.; Baptista, A.A.; Hooland, S. van; Resmini, A.; Mendéz, E.; Neville, L.: Kinds of Tags : a collaborative research study on tag usage and structure (2007) 0.00
    0.001674345 = product of:
      0.00334869 = sum of:
        0.00334869 = product of:
          0.00669738 = sum of:
            0.00669738 = weight(_text_:a in 531) [ClassicSimilarity], result of:
              0.00669738 = score(doc=531,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12611452 = fieldWeight in 531, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=531)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  10. Golub, K.; Moon, J.; Nielsen, M.L.; Tudhope, D.: EnTag: Enhanced Tagging for Discovery (2008) 0.00
    0.001674345 = product of:
      0.00334869 = sum of:
        0.00334869 = product of:
          0.00669738 = sum of:
            0.00669738 = weight(_text_:a in 2294) [ClassicSimilarity], result of:
              0.00669738 = score(doc=2294,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12611452 = fieldWeight in 2294, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2294)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose: Investigate the combination of controlled and folksonomy approaches to support resource discovery in repositories and digital collections. Aim: Investigate whether use of an established controlled vocabulary can help improve social tagging for better resource discovery. Objectives: (1) Investigate indexing aspects when using only social tagging versus when using social tagging with suggestions from a controlled vocabulary; (2) Investigate above in two different contexts: tagging by readers and tagging by authors; (3) Investigate influence of only social tagging versus social tagging with a controlled vocabulary on retrieval. - Vgl.: http://www.ukoln.ac.uk/projects/enhanced-tagging/.
  11. Trant, J.; Bearman, D.: Social terminology enhancement through vernacular engagement : exploring collaborative annotation to encourage interaction with museum collections (2005) 0.00
    0.0015127839 = product of:
      0.0030255679 = sum of:
        0.0030255679 = product of:
          0.0060511357 = sum of:
            0.0060511357 = weight(_text_:a in 1185) [ClassicSimilarity], result of:
              0.0060511357 = score(doc=1185,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11394546 = fieldWeight in 1185, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1185)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    From their earliest encounters with the Web, museums have seen an opportunity to move beyond uni-directional communication into an environment that engages their users and reflects a multiplicity of perspectives. Shedding the "Unassailable Voice" (Walsh 1997) in favor of many "Points of View" (Sledge 1995) has challenged traditional museum approaches to the creation and delivery of content. Novel approaches are required in order to develop and sustain user engagement (Durbin 2004). New models of exhibit creation that democratize the curatorial functions of object selection and interpretation offer one way of opening up the museum (Coldicutt and Streten 2005). Another is to use the museum as a forum and focus for community story-telling (Howard, Pratty et al. 2005). Unfortunately, museum collections remain relatively inaccessible even when 'made available' through searchable on-line databases. Museum documentation seldom satisfies the on-line access needs of the broad public, both because it is written using professional terminology and because it may not address what is important to - or remembered by - the museum visitor. For example, an exhibition now on-line at The Metropolitan Museum of Art acknowledges "Coco" Chanel only in the brief, textual introduction (The Metropolitan Museum of Art 2005a). All of the images of her delightful fashion designs are attributed to "Gabrielle Chanel" (The Metropolitan Museum of Art 2005a). Interfaces that organize collections along axes of time or place - such of that of the Timeline of Art History (The Metropolitan Museum of Art 2005e) - often fail to match users' world-views, despite the care that went into their structuring or their significant pedagogical utility. Critically, as professionals working with art museums we realize that when cataloguers and curators describe works of art, they usually do not include the "subject" of the image itself. Simply put, we rarely answer the question "What is it a picture of?" Unfortunately, visitors will often remember a work based on its visual characteristics, only to find that Web-based searches for any of the things they recall do not produce results.
    Type
    a
  12. Shiri, A.: Trend analysis in social tagging : an LIS perspective (2007) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 529) [ClassicSimilarity], result of:
              0.0054123 = score(doc=529,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 529, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=529)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  13. Hänger, C.: Knowledge management in the digital age : the possibilities of user generated content (2009) 0.00
    8.4567186E-4 = product of:
      0.0016913437 = sum of:
        0.0016913437 = product of:
          0.0033826875 = sum of:
            0.0033826875 = weight(_text_:a in 2813) [ClassicSimilarity], result of:
              0.0033826875 = score(doc=2813,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.06369744 = fieldWeight in 2813, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2813)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Today, in times of Web 2.0., graduates and undergraduates interact in virtual communities like studiVZ (Studentenverzeichnis) and generate content by reviewing or tagging documents. This phenomenon offers good prospects for academic libraries. They can use the customers' tags for indexing the growing amount of electronic resources and thereby optimize the search for these documents. Important examples are the journals, databases and e-books included in the "Nationallizenzen" financed by the German Research Foundation (DFG). The documents in this collection are not manually indexed by librarians and have no annotation according to the German standard classification systems. Connecting search systems by means of Web-2.0.-services is an important task for libraries. For this purpose users are encouraged to tag printed and electronic resources in search systems like the libraries' online catalogs and to establish connections between entries in other systems, e.g. Bibsonomy, and the items found in the online catalog. As a consequence annotations chosen by both, users and librarians, will coexist: The items in the tagging systems and the online catalog are linked, library users may find other publications of interest, and contacts between library users with similar scientific interests may be established. Librarians have to face the fact that user generated tags do not necessarily have the same quality as their own annotations and will therefore have to seek for instruments for comparing user generated tags with library generated keywords.