Search (8 results, page 1 of 1)

  • × theme_ss:"Suchoberflächen"
  • × theme_ss:"Literaturübersicht"
  1. Grudin, J.: Human-computer interaction (2011) 0.05
    0.048416097 = product of:
      0.09683219 = sum of:
        0.09683219 = sum of:
          0.009471525 = weight(_text_:a in 1601) [ClassicSimilarity], result of:
            0.009471525 = score(doc=1601,freq=2.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.17835285 = fieldWeight in 1601, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.109375 = fieldNorm(doc=1601)
          0.087360665 = weight(_text_:22 in 1601) [ClassicSimilarity], result of:
            0.087360665 = score(doc=1601,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.5416616 = fieldWeight in 1601, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.109375 = fieldNorm(doc=1601)
      0.5 = coord(1/2)
    
    Date
    27.12.2014 18:54:22
    Type
    a
  2. Marchionini, G.; Komlodi, A.: Design of interfaces for information seeking (1999) 0.00
    0.00334869 = product of:
      0.00669738 = sum of:
        0.00669738 = product of:
          0.01339476 = sum of:
            0.01339476 = weight(_text_:a in 4687) [ClassicSimilarity], result of:
              0.01339476 = score(doc=4687,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.25222903 = fieldWeight in 4687, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4687)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  3. Rogers, Y.: New theoretical approaches for human-computer interaction (2003) 0.00
    0.0025803389 = product of:
      0.0051606777 = sum of:
        0.0051606777 = product of:
          0.010321355 = sum of:
            0.010321355 = weight(_text_:a in 4270) [ClassicSimilarity], result of:
              0.010321355 = score(doc=4270,freq=38.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19435552 = fieldWeight in 4270, product of:
                  6.164414 = tf(freq=38.0), with freq of:
                    38.0 = termFreq=38.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4270)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    "Theory weary, theory leery, why can't I be theory cheery?" (Erickson, 2002, p. 269). The field of human-computer interaction (HCI) is rapidly expanding. Alongside the extensive technological developments that are taking place, a profusion of new theories, methods, and concerns has been imported into the field from a range of disciplines and contexts. An extensive critique of recent theoretical developments is presented here together with an overview of HCI practice. A consequence of bringing new theories into the field has been much insightful explication of HCI phenomena and also a broadening of the field's discourse. However, these theoretically based approaches have had limited impact an the practice of interaction design. This chapter discusses why this is so and suggests that different kinds of mechanisms are needed that will enable both designers and researchers to better articulate and theoretically ground the challenges facing them today. Human-computer interaction is bursting at the seams. Its mission, goals, and methods, well established in the '80s, have all greatly expanded to the point that "HCI is now effectively a boundless domain" (Barnard, May, Duke, & Duce, 2000, p. 221). Everything is in a state of flux: The theory driving research is changing, a flurry of new concepts is emerging, the domains and type of users being studied are diversifying, many of the ways of doing design are new, and much of what is being designed is significantly different. Although potentially much is to be gained from such rapid growth, the downside is an increasing lack of direction, structure, and coherence in the field. What was originally a bounded problem space with a clear focus and a small set of methods for designing computer systems that were easier and more efficient to use by a single user is now turning into a diffuse problem space with less clarity in terms of its objects of study, design foci, and investigative methods. Instead, aspirations of overcoming the Digital Divide, by providing universal accessibility, have become major concerns (e.g., Shneiderman, 2002a). The move toward greater openness in the field means that many more topics, areas, and approaches are now considered acceptable in the worlds of research and practice.
    A problem with allowing a field to expand eclectically is that it can easily lose coherence. No one really knows what its purpose is anymore or what criteria to use in assessing its contribution and value to both knowledge and practice. For example, among the many new approaches, ideas, methods, and goals now being proposed, how do we know which are acceptable, reliable, useful, and generalizable? Moreover, how do researchers and designers know which of the many tools and techniques to use when doing design and research? To be able to address these concerns, a young field in a state of flux (as is HCI) needs to take stock and begin to reflect an the changes that are happening. The purpose of this chapter is to assess and reflect an the role of theory in contemporary HCI and the extent to which it is used in design practice. Over the last ten years, a range of new theories has been imported into the field. A key question is whether such attempts have been productive in terms of "knowledge transfer." Here knowledge transfer means the translation of research findings (e.g., theory, empirical results, descriptive accounts, cognitive models) from one discipline (e.g., cognitive psychology, sociology) into another (e.g., human-computer interaction, computer supported cooperative work).
    Type
    a
  4. Callahan, E.: Interface design and culture (2004) 0.00
    0.0017899501 = product of:
      0.0035799001 = sum of:
        0.0035799001 = product of:
          0.0071598003 = sum of:
            0.0071598003 = weight(_text_:a in 4281) [ClassicSimilarity], result of:
              0.0071598003 = score(doc=4281,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13482209 = fieldWeight in 4281, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4281)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    It is common knowledge that computer interfaces in different cultures vary. Interface designers present information in different languages, use different iconography to designate concepts, and employ different standards for dates, time, and numbers. These manifest differences beg the question of how easily an interface designed in one country can be used in and transferred to another country. Are the challenges involved in adaptation merely cosmetic or are they shaped by more profound forces? Do all cultures respond to interfaces in similar ways, or does culture itself shape user comprehension? If culture is a factor in explaining varied user reactions to comparable interfaces, what specific cultural dimensions are responsible for the divergences? Do differences reside mainly at the level of national cultures, or do they depend an other variables such as class, gender, age, education, and expertise with technology? In the face of a potentially large number of explanatory variables, how do we delimit a workable concept of culture and yet remain cognizant of other factors that might shape the results of culture and interface research? Questions such as these have been asked in the ergonomics community since the early 1970s, when the industrialization of developing countries created a need for more research an cultural differences (Honold, 1999), resulting in an increased interest in the universal applicability of ergonomic principles. This trend continued after the reunification of Germany and the emergence of market economies in Eastern Europe (Nielsen, 1990). In the mid-1990s, as markets outside the U.S. rapidly expanded, it became necessary to develop appropriate user interfaces for non-Western cultures in order to facilitate international cooperation. This fresh impetus for research led to the development of practical guidelines and a body of Gase studies and examples of possible solutions. Most recently we have seen attempts to provide a theoretical foundation for cross-cultural usability engineering and experimental comparison studies (Honold, 1999).
    Type
    a
  5. White, H.D.; McCain, K.W.: Visualization of literatures (1997) 0.00
    0.001674345 = product of:
      0.00334869 = sum of:
        0.00334869 = product of:
          0.00669738 = sum of:
            0.00669738 = weight(_text_:a in 2291) [ClassicSimilarity], result of:
              0.00669738 = score(doc=2291,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12611452 = fieldWeight in 2291, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2291)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    State of the art review of recent models of literatures that offer visual clues to relationships among writings that are often based term occurences and co-occurences. Considers the advantages of 2 dimensional and 3 dimensional displays of relationships over other models; bibliographic models; editorial models; bibliometric models; user models; and synthetic models. Discusses the online visualization and offline visualizations and the problems of visualizing changing literatures in a static medium, such as hard copy print. Argues that insufficient attention has been paid to user friendly visual design with the related questions of new capabilities and scaling up to larger collections. Concludes with the hope that, in future, the same visualization interface used for bibliographic domain analysis will be used for document retrieval
    Type
    a
  6. Yee, M.M.: System design and cataloging meet the user : user interfaces to online public access catalogs (1991) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 2782) [ClassicSimilarity], result of:
              0.005740611 = score(doc=2782,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 2782, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2782)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Current research on user interfaces to online public access catalogs is reviewed in an attempt to identify research methods and findings applicable to the design of effective user interfaces to online public access catalogs. A broad definition of user interface is employed which includes data structures, in addition to searching and indexing software. The following features of online public access catalogs are discussed: the demonstration of relationships between records, the provision of entry vocabularies, the arrangement of multiple entries on the screen, the provision of access points, the display of single records, and the division of the catalog into separate files or indexes. For each feature, user studies and other research on online public access catalogs are reviewed and those findings summarized which provide insight into user needs concerning that particular feature; issues are identified and directions for further research are suggested. Implications for cataloging codes and standards and system design are discussed
    Type
    a
  7. Shires, N.L.; Olszak, L.P.: What our screen should look alike : an introduction to effective PAC screens (1992) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 8476) [ClassicSimilarity], result of:
              0.0054123 = score(doc=8476,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 8476, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=8476)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  8. Shaw, D.: ¬The human-computer interface for information retrieval (1991) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 5261) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=5261,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 5261, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5261)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a