Search (30 results, page 1 of 2)

  • × year_i:[1990 TO 2000}
  • × theme_ss:"Formale Begriffsanalyse"
  1. Vogt, F.; Wille, R.: TOSCANA - a graphical tool for analyzing and exploring data (1995) 0.03
    0.031011326 = product of:
      0.062022652 = sum of:
        0.062022652 = sum of:
          0.012102271 = weight(_text_:a in 1901) [ClassicSimilarity], result of:
            0.012102271 = score(doc=1901,freq=10.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.22789092 = fieldWeight in 1901, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0625 = fieldNorm(doc=1901)
          0.04992038 = weight(_text_:22 in 1901) [ClassicSimilarity], result of:
            0.04992038 = score(doc=1901,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.30952093 = fieldWeight in 1901, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=1901)
      0.5 = coord(1/2)
    
    Abstract
    TOSCANA is a computer program which allows an online interaction with larger data bases to analyse and explore data conceptually. It uses labelled line diagrams of concept lattices to communicate knowledge coded in given data. The basic problem to create online presentations of concept lattices is solved by composing prepared diagrams to nested line diagrams. A larger number of applications in different areas have already shown that TOSCANA is a useful tool for many purposes
    Source
    Knowledge organization. 22(1995) no.2, S.78-81
    Type
    a
  2. Priss, U.: Faceted knowledge representation (1999) 0.03
    0.026575929 = product of:
      0.053151857 = sum of:
        0.053151857 = sum of:
          0.009471525 = weight(_text_:a in 2654) [ClassicSimilarity], result of:
            0.009471525 = score(doc=2654,freq=8.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.17835285 = fieldWeight in 2654, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2654)
          0.043680333 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
            0.043680333 = score(doc=2654,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.2708308 = fieldWeight in 2654, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2654)
      0.5 = coord(1/2)
    
    Abstract
    Faceted Knowledge Representation provides a formalism for implementing knowledge systems. The basic notions of faceted knowledge representation are "unit", "relation", "facet" and "interpretation". Units are atomic elements and can be abstract elements or refer to external objects in an application. Relations are sequences or matrices of 0 and 1's (binary matrices). Facets are relational structures that combine units and relations. Each facet represents an aspect or viewpoint of a knowledge system. Interpretations are mappings that can be used to translate between different representations. This paper introduces the basic notions of faceted knowledge representation. The formalism is applied here to an abstract modeling of a faceted thesaurus as used in information retrieval.
    Date
    22. 1.2016 17:30:31
    Type
    a
  3. Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen : Ein Beitrag zur Restrukturierung der mathematischen Logik (1998) 0.02
    0.01560012 = product of:
      0.03120024 = sum of:
        0.03120024 = product of:
          0.06240048 = sum of:
            0.06240048 = weight(_text_:22 in 3142) [ClassicSimilarity], result of:
              0.06240048 = score(doc=3142,freq=2.0), product of:
                0.16128273 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046056706 = queryNorm
                0.38690117 = fieldWeight in 3142, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3142)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    26. 2.2008 15:58:22
  4. Vogt, F.; Wachter, C.; Wille, R.: Data analysis based on a conceptual file (1991) 0.00
    0.00334869 = product of:
      0.00669738 = sum of:
        0.00669738 = product of:
          0.01339476 = sum of:
            0.01339476 = weight(_text_:a in 3140) [ClassicSimilarity], result of:
              0.01339476 = score(doc=3140,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.25222903 = fieldWeight in 3140, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3140)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  5. Vogt, F.; Wille, R.: TOSCANA - a graphical tool for analyzing and exploring data (1995) 0.00
    0.00334869 = product of:
      0.00669738 = sum of:
        0.00669738 = product of:
          0.01339476 = sum of:
            0.01339476 = weight(_text_:a in 595) [ClassicSimilarity], result of:
              0.01339476 = score(doc=595,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.25222903 = fieldWeight in 595, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=595)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  6. Luksch, P.; Wille, R.: ¬A mathematical model for conceptual knowledge systems (1991) 0.00
    0.0031324127 = product of:
      0.0062648254 = sum of:
        0.0062648254 = product of:
          0.012529651 = sum of:
            0.012529651 = weight(_text_:a in 3033) [ClassicSimilarity], result of:
              0.012529651 = score(doc=3033,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.23593865 = fieldWeight in 3033, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3033)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Objects, attributes, and concepts are basic notations of conceptual knowledge; they are linked by the following four basic relations: an object has an attribute, an object belongs to a concept, an attribute abstracts from a concept, and a concept is a subconcept of another concept. These structural elements are well mathematized in formal concept analysis. Therefore, conceptual knowledge systems can be mathematically modelled in the frame of formal concept analysis. How such modelling may be performed is indicated by an example of a conceptual knowledge system. The formal definition of the model finally clarifies in which ways representation, inference, acquisition, and communication of conceptual knowledge can be mathematically treated
    Type
    a
  7. Priss, U.: ¬A graphical interface for conceptually navigating faceted thesauri (1998) 0.00
    0.0029000505 = product of:
      0.005800101 = sum of:
        0.005800101 = product of:
          0.011600202 = sum of:
            0.011600202 = weight(_text_:a in 6658) [ClassicSimilarity], result of:
              0.011600202 = score(doc=6658,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.21843673 = fieldWeight in 6658, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6658)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper describes a graphical interface for the navigation and construction of faceted thesauri that is based on formal concept analysis. Each facet of a thesaurus is represented as a mathematical lattice that is further subdivided into components. Users can graphically navigate through the Java implementation of the interface by clicking on terms that connect facets and components. Since there are many applications for thesauri in the knowledge representation field, such a graphical interface has the potential of being very useful
    Type
    a
  8. Wille, R.: Begriffliche Datensysteme als Werkzeuge der Wissenskommunikation (1992) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 8826) [ClassicSimilarity], result of:
              0.011481222 = score(doc=8826,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 8826, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=8826)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Mensch und Maschine: Informationelle Schnittstellen der Kommunikation. Proc. des 3. Int. Symposiums für Informationswissenschaft (ISI'92), 5.-7.11.1992 in Saarbrücken. Hrsg.: H.H. Zimmermann, H.-D. Luckhardt u. A. Schulz
    Type
    a
  9. Rusch, A.; Wille, R.: Knowledge spaces and formal concept analysis (1996) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 5895) [ClassicSimilarity], result of:
              0.011481222 = score(doc=5895,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 5895, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=5895)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  10. Ganter, B.: Algorithmen zur formalen Begriffsanalyse (1991) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 3038) [ClassicSimilarity], result of:
              0.0108246 = score(doc=3038,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 3038, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=3038)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  11. Wille, R.: Concept lattices and conceptual knowledge systems (1992) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 3142) [ClassicSimilarity], result of:
              0.0108246 = score(doc=3142,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 3142, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=3142)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  12. Sedelow, W.A.: ¬The formal analysis of concepts (1993) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 620) [ClassicSimilarity], result of:
              0.0108246 = score(doc=620,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 620, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=620)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The present paper focuses on the extraction, by means of a formal logical/mathematical methodology (i.e. automatically, exclusively by rule), of concept content, as in, for example, continuous discourse. The approach to a fully formal defintion of concept content ultimately is owing to a German government initiative to establish 'standards' regarding concepts, in conjunction with efforts to stipulate precisely (and then, derivatively, through computer prgrams) data and information needs according to work role in certain government offices
    Type
    a
  13. Reinartz, T.P.; Zickwolff, M.: ¬Two conceptual approaches to acquire human expert knowledge in a complex real world domain (1996) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 5908) [ClassicSimilarity], result of:
              0.009567685 = score(doc=5908,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 5908, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5908)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  14. Kollewe, W.: Data representation by nested line diagrams illustrated by a survey of pensioners (1991) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 5230) [ClassicSimilarity], result of:
              0.009471525 = score(doc=5230,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 5230, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5230)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    With formal concept analysis surveys are analyzable in the way that a meaningful picture of the answers of the interviewed persons is available. Line diagrams of large concept lattices might become less readable up to the point that it is impossible to pursue the line segments with the eyes. Nested line diagrams give the opportunity to overcome these difficulties. The main idea of nested line diagrams is to partition the line diagram into boxes so that line segments between two boxes are all parallel and may be replaced by one line segment. The possibility to draw line diagrams with more than two factors does allow it to describe concept lattices with many hundred or thousand concepts in a clear structure. In practice it has often been proven useful to take standardized scales for the single levels
    Type
    a
  15. Vogt, C.; Wille, R.: Formale Begriffsanalyse : Darstellung und Analyse von bibliographischen Daten (1994) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 7603) [ClassicSimilarity], result of:
              0.009471525 = score(doc=7603,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 7603, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=7603)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  16. Zickwolff, M.: Zur Rolle der Formalen Begriffsanalyse in der Wissensakquisition (1994) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 8938) [ClassicSimilarity], result of:
              0.009471525 = score(doc=8938,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 8938, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=8938)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  17. Sedelow, S.Y.; Sedelow, W.A.: Thesauri and concept-lattice semantic nets (1994) 0.00
    0.0023435948 = product of:
      0.0046871896 = sum of:
        0.0046871896 = product of:
          0.009374379 = sum of:
            0.009374379 = weight(_text_:a in 7733) [ClassicSimilarity], result of:
              0.009374379 = score(doc=7733,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17652355 = fieldWeight in 7733, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7733)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Formal concept lattices are a promising vehicle for the construction of rigorous and empirically accurate semantic nets. Presented here are results of initial experiments with concept lattices as representations of semantic relationships in the implicit structure of a large database (e.g. Roget's thesaurus)
    Type
    a
  18. Kent, R.E.: Implications and rules in thesauri (1994) 0.00
    0.0023435948 = product of:
      0.0046871896 = sum of:
        0.0046871896 = product of:
          0.009374379 = sum of:
            0.009374379 = weight(_text_:a in 3457) [ClassicSimilarity], result of:
              0.009374379 = score(doc=3457,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17652355 = fieldWeight in 3457, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3457)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A central consideration in the study of whole language semantic space as encoded in thesauri is word sense comparability. Shows how word sense comparability can be adequately expressed by the logical implications and rules from Formal Concept Analysis. Formal concept analysis, a new approach to formal logic initiated by Rudolf Wille, has been used for data modelling, analysis and interpretation, and also for knowledge representation and knowledge discovery
    Type
    a
  19. Kollewe, W.; Skorsky, M.; Vogt, F.; Wille, R.: TOSCANA - ein Werkzeug zur begrifflichen Analyse und Erkundung von Daten (1994) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 8942) [ClassicSimilarity], result of:
              0.008118451 = score(doc=8942,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 8942, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=8942)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  20. Wille, R.; Wachter, C.: Begriffsanalyse von Dokumenten (1992) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 341) [ClassicSimilarity], result of:
              0.008118451 = score(doc=341,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 341, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=341)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a