Search (14 results, page 1 of 1)

  • × year_i:[2000 TO 2010}
  • × author_ss:"Green, R."
  1. Green, R.: Relationships in the Dewey Decimal Classification (DDC) : plan of study (2008) 0.00
    0.00270615 = product of:
      0.0054123 = sum of:
        0.0054123 = product of:
          0.0108246 = sum of:
            0.0108246 = weight(_text_:a in 3397) [ClassicSimilarity], result of:
              0.0108246 = score(doc=3397,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20383182 = fieldWeight in 3397, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3397)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    EPC Exhibit 129-36.1 presented intermediate results of a project to connect Relative Index terms to topics associated with classes and to determine if those Relative Index terms approximated the whole of the corresponding class or were in standing room in the class. The Relative Index project constitutes the first stage of a long(er)-term project to instill a more systematic treatment of relationships within the DDC. The present exhibit sets out a plan of study for that long-term project.
  2. Green, R.: Semantic types, classes, and instantiation (2006) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 236) [ClassicSimilarity], result of:
              0.00994303 = score(doc=236,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 236, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=236)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Semantic types provide a level of abstraction over particulars with shared behavior, such as in the participant structure of semantic frames. The paper presents a preliminary investigation, drawing on data from WordNet and FrameNet, into the relationship between hierarchical level and the semantic types that name frame elements (a.k.a. slots). Patterns discovered include: (1) The level of abstraction of a frame is generally matched by the level of abstraction of its frame elements. (2) The roles played by persons tend to be expressed very specifically. (3) Frame elements that mirror the name of the frame tend to be expressed specifically. (4) Some frame participants tend to be expressed at a constant (general) level of abstraction, regardless of the level of abstraction of the overall frame.
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
    Type
    a
  3. Green, R.: Automated identification of frame semantic relational structures (2000) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 110) [ClassicSimilarity], result of:
              0.009471525 = score(doc=110,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 110, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=110)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Preliminary attempts to identify semantic frames and their internal structure automatically have met with a degree of success. In a first stage, clustering is used to detect 4 previously identified semantic frames (COMMERCIAL TRANSACTION, HIT, JUDGING, RISK) from verb definitions in Longman's Dictionary of Contemporary English. In a second stage, nouns used in the definitions of frame-invoking verbs or in whose definitions the frame-invoking verbs occur in certain forms are searched in WordNet to identify frame elements. Suggestions for refinement of the processes are discussed
    Type
    a
  4. Bean, C.A.; Green, R.: Relevance relationships (2001) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 1150) [ClassicSimilarity], result of:
              0.008202582 = score(doc=1150,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 1150, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1150)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Relevance arises from relationships between user needs and documents/information. In the quest for relevant retrieval, some content-based relationships are best used initially to cast a net that emphasizes recall, while others, both content- and non-content-based, are best used subsequently as filtering devices to achieve better precision. Topical relevance, the primary factor in the initial retrieval operation, extends far beyond topic matching, as often assumed. Empirical studies demonstrate that topical relevance relationships are drawn from a broad but systematic inventory of semantic relationships.
    Type
    a
  5. Green, R.: Relationships in knowledge organization (2008) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 2135) [ClassicSimilarity], result of:
              0.008202582 = score(doc=2135,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 2135, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2135)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Relationships that interconnect entity classes of import to knowledge organization (knowledge, documents, concepts, beings, information needs, language) include both non-subject bibliographic relationships (document-to-document relationships, responsibility relationships) and conceptual content relationships (subject relationships, relevance relationships). While the MARC format allows the recording of most bibliographic relationships, many of them are not expressed systematically. Conceptual content relationships include, in turn, interconcept and intraconcept relationships. The expression of interconcept relationships is covered by standard thesaural relationships, which typically do not distinguish fully between the underlying lexical relationship types. The full expression of complex intraconcept relationships includes indication of the basic nature of the relationship (including a set of semantic roles), the set of entities that participate in the relationship, and a mapping between participants and semantic roles. Knowledge organization schemes seldom express these relationships fully.
    Type
    a
  6. Green, R.: WordNet (2009) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 4696) [ClassicSimilarity], result of:
              0.008202582 = score(doc=4696,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 4696, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4696)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    WordNet, a lexical database for English, is organized around semantic and lexical relationships between synsets, concepts represented by sets of synonymous word senses. Offering reasonably comprehensive coverage of the nouns, verbs, adjectives, and adverbs of general English, WordNet is a widely used resource for dealing with the ambiguity that arises from homonymy, polysemy, and synonymy. WordNet is used in many information-related tasks and applications (e.g., word sense disambiguation, semantic similarity, lexical chaining, alignment of parallel corpora, text segmentation, sentiment and subjectivity analysis, text classification, information retrieval, text summarization, question answering, information extraction, and machine translation).
    Type
    a
  7. Green, R.; Bean, C.A.: Aligning systems of relationships (2006) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 4949) [ClassicSimilarity], result of:
              0.007654148 = score(doc=4949,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 4949, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4949)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Knowledge organization, information systems and other essays: Professor A. Neelameghan Festschrift. Ed. by K.S. Raghavan and K.N. Prasad
    Type
    a
  8. Green, R.; Fraser, L.: Patterns in verbal polysemy (2004) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 2621) [ClassicSimilarity], result of:
              0.007654148 = score(doc=2621,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 2621, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2621)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Although less well studied than noun polysemy, verb polysemy affects both natural language and controlled vocabulary searching. This paper reports the preliminary conclusions of an empirical investigation of the semantic relationships between ca. 600 verb sense pairs in English, illustrating six classes of semantic relationships that account for a significant proportion of verbal polysemy.
    Type
    a
  9. Green, R.; Bean, C.A.; Hudon, M.: Universality and basic level concepts (2003) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 2730) [ClassicSimilarity], result of:
              0.007654148 = score(doc=2730,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 2730, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2730)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper examines whether a concept's hierarchical level affects the likelihood of its universality across schemes for knowledge representation and knowledge organization. Empirical data an equivalents are drawn from a bilingual thesaurus, a pair of biomedical vocabularies, and two ontologies. Conceptual equivalence across resources occurs significantly more often at the basic level than at subordinate or superordinate levels. Attempts to integrate knowledge representation or knowledge organization tools should concentrate an establishing equivalences at the basic level. 1. Rationale The degree of success attainable in the integration of multiple knowledge representation systems or knowledge organization schemes is constrained by limitations an the universality of human conceptual systems. For example, human languages do not all lexicalize the same set of concepts; nor do they structure (quasi-)equivalent concepts in the same relational patterns (Riesthuis, 2001). As a consequence, even multilingual thesauri designed from the outset from the perspective of multiple languages may routinely include situations where corresponding terms are not truly equivalent (Hudon, 1997, 2001). Intuitively, where inexactness and partialness in equivalence mappings across knowledge representation schemes and knowledge organizations schemes exist, a more difficult retrieval scenario arises than where equivalence mappings reflect full and exact conceptual matches. The question we address in this paper is whether a concept's hierarchical level af ects the likelihood of its universality/full equivalence across schemes for knowledge representation and knowledge organization. Cognitive science research has shown that one particular hierarchical level-called the basic level--enjoys a privileged status (Brown, 1958; Rosch et al., 1976). Our underlying hypothesis is that concepts at the basic level (e.g., apple, shoe, chair) are more likely to match across knowledge representation schemes and knowledge organization schemes than concepts at the superordinate (e.g., fruit, footwear, furniture) or subordinate (e.g., Granny Smith, sneaker, recliner) levels. This hypothesis is consistent with ethnobiological data showing that folk classifications of flora are more likely to agree at the basic level than at superordinate or subordinate levels (Berlin, 1992).
    Type
    a
  10. Bean, C.A.; Green, R.: Improving subject retrieval with frame representation (2003) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 3960) [ClassicSimilarity], result of:
              0.007654148 = score(doc=3960,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 3960, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3960)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Subject retrieval in a networked environment: Proceedings of the IFLA Satellite Meeting held in Dublin, OH, 14-16 August 2001 and sponsored by the IFLA Classification and Indexing Section, the IFLA Information Technology Section and OCLC. Ed.: I.C. McIlwaine
    Type
    a
  11. Green, R.: Conceptual universals in knowledge organization and representation (2003) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 2629) [ClassicSimilarity], result of:
              0.007030784 = score(doc=2629,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 2629, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2629)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Within the overall conference theme-integration of knowledge across boundaries-an important subtheme is universality: Where universals of knowledge organization and representation exist, knowledge integration is more likely. Thus, knowledge of conceptual universals should inform efforts at knowledge integration. In this paper, natural language is used as a model for exploring conceptual universals, since the phenomenon of translating between languages validates, but also circumscribes, the existence of semantic and lexical universals. The paper explores a representative inventory of semantic and lexical universals that should be accounted for in knowledge organization and representation systems, especially those that aim to be comprehensive.
    Type
    a
  12. Green, R.: Relationships in the organization of knowledge : an overview (2001) 0.00
    0.001674345 = product of:
      0.00334869 = sum of:
        0.00334869 = product of:
          0.00669738 = sum of:
            0.00669738 = weight(_text_:a in 1142) [ClassicSimilarity], result of:
              0.00669738 = score(doc=1142,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12611452 = fieldWeight in 1142, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1142)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Relationships are specified by simultaneously identifying a semantic relationship and the set of participants involved in it, pairing each participant with its role in the relationship. Properties pertaining to the participant set and the nature of the relationship are explored. Relationships in the organization of knowledge are surveyed, encompassing relationships between units of recorded knowledge based an descriptions of those units; intratextual and intertextual relationships, including relationships based an text structure, citation relationships, and hypertext links; subject relationships in thesauri and other classificatory structures, including relationships for literature-based knowledge discovery; and relevance relationships.
    Type
    a
  13. Green, R.: Internally-structured conceptual models in cognitive semantics (2002) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 1193) [ClassicSimilarity], result of:
              0.0054123 = score(doc=1193,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 1193, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1193)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  14. Green, R.: Making visible hidden relationships in the Dewey Decimal Classification : how relative index terms relate to DDC classes (2008) 0.00
    0.0011839407 = product of:
      0.0023678814 = sum of:
        0.0023678814 = product of:
          0.0047357627 = sum of:
            0.0047357627 = weight(_text_:a in 2236) [ClassicSimilarity], result of:
              0.0047357627 = score(doc=2236,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.089176424 = fieldWeight in 2236, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2236)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a