Search (20 results, page 1 of 1)

  • × year_i:[2010 TO 2020}
  • × author_ss:"Gnoli, C."
  1. Gnoli, C.: Classifying phenomena : part 4: themes and rhemes (2018) 0.03
    0.025451606 = product of:
      0.050903212 = sum of:
        0.050903212 = sum of:
          0.013462927 = weight(_text_:a in 4152) [ClassicSimilarity], result of:
            0.013462927 = score(doc=4152,freq=22.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.25351265 = fieldWeight in 4152, product of:
                4.690416 = tf(freq=22.0), with freq of:
                  22.0 = termFreq=22.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=4152)
          0.037440285 = weight(_text_:22 in 4152) [ClassicSimilarity], result of:
            0.037440285 = score(doc=4152,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 4152, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4152)
      0.5 = coord(1/2)
    
    Abstract
    This is the fourth in a series of papers on classification based on phenomena instead of disciplines. Together with types, levels and facets that have been discussed in the previous parts, themes and rhemes are further structural components of such a classification. In a statement or in a longer document, a base theme and several particular themes can be identified. Base theme should be cited first in a classmark, followed by particular themes, each with its own facets. In some cases, rhemes can also be expressed, that is new information provided about a theme, converting an abstract statement ("wolves, affected by cervids") into a claim that some thing actually occurs ("wolves are affected by cervids"). In the Integrative Levels Classification rhemes can be expressed by special deictic classes, including those for actual specimens, anaphoras, unknown values, conjunctions and spans, whole universe, anthropocentric favoured classes, and favoured host classes. These features, together with rules for pronounciation, make a classification of phenomena a true language, that may be suitable for many uses.
    Date
    17. 2.2018 18:22:25
    Type
    a
  2. Gnoli, C.: Boundaries and overlaps of disciplines in Bloch's methodology of historical knowledge (2014) 0.02
    0.022235535 = product of:
      0.04447107 = sum of:
        0.04447107 = sum of:
          0.007030784 = weight(_text_:a in 1414) [ClassicSimilarity], result of:
            0.007030784 = score(doc=1414,freq=6.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.13239266 = fieldWeight in 1414, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=1414)
          0.037440285 = weight(_text_:22 in 1414) [ClassicSimilarity], result of:
            0.037440285 = score(doc=1414,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 1414, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1414)
      0.5 = coord(1/2)
    
    Abstract
    Marc Bloch's famous methodological essay, The Historian's Craft, contains many relevant considerations on knowledge organization. These have been selected and grouped into four main themes: terminology problems in history; principles for the organization of historical knowledge, with special reference to the genetic principle; sources of historical information, to be found not only in archives but also in very different media and contexts; and the nature and boundaries of history as a discipline. Analysis of them shows that knowledge organization is an important part of historians' work, and suggests that it can be especially fruitful when a cross-medial, interdisciplinary approach is adopted.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Type
    a
  3. Lardera, M.; Gnoli, C.; Rolandi, C.; Trzmielewski, M.: Developing SciGator, a DDC-based library browsing tool (2017) 0.02
    0.021590449 = product of:
      0.043180898 = sum of:
        0.043180898 = sum of:
          0.005740611 = weight(_text_:a in 4144) [ClassicSimilarity], result of:
            0.005740611 = score(doc=4144,freq=4.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.10809815 = fieldWeight in 4144, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=4144)
          0.037440285 = weight(_text_:22 in 4144) [ClassicSimilarity], result of:
            0.037440285 = score(doc=4144,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 4144, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4144)
      0.5 = coord(1/2)
    
    Content
    Beitrag eines Special Issue: ISKO-Italy: 8' Incontro ISKO Italia, Università di Bologna, 22 maggio 2017, Bologna, Italia.
    Type
    a
  4. Gnoli, C.; Merli, G.; Pavan, G.; Bernuzzi, E.; Priano, M.: Freely faceted classification for a Web-based bibliographic archive : the BioAcoustic Reference Database (2010) 0.02
    0.020383961 = product of:
      0.040767923 = sum of:
        0.040767923 = sum of:
          0.009567685 = weight(_text_:a in 3739) [ClassicSimilarity], result of:
            0.009567685 = score(doc=3739,freq=16.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.18016359 = fieldWeight in 3739, product of:
                4.0 = tf(freq=16.0), with freq of:
                  16.0 = termFreq=16.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3739)
          0.03120024 = weight(_text_:22 in 3739) [ClassicSimilarity], result of:
            0.03120024 = score(doc=3739,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 3739, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3739)
      0.5 = coord(1/2)
    
    Abstract
    The Integrative Level Classification (ILC) research project is experimenting with a knowledge organization system based on phenomena rather than disciplines. Each phenomenon has a constant notation, which can be combined with that of any other phenomenon in a freely faceted structure. Citation order can express differential focality of the facets. Very specific subjects can have long classmarks, although their complexity is reduced by various devices. Freely faceted classification is being tested by indexing a corpus of about 3300 papers in the interdisciplinary domain of bioacoustics. The subjects of these papers often include phenomena from a wide variety of integrative levels (mechanical waves, animals, behaviour, vessels, fishing, law, ...) as well as information about the methods of study, as predicted in the León Manifesto. The archive is recorded in a MySQL database, and can be fed and searched through PHP Web interfaces. Indexer's work is made easier by mechanisms that suggest possible classes on the basis of matching title words with terms in the ILC schedules, and synthesize automatically the verbal caption corresponding to the classmark being edited. Users can search the archive by selecting and combining values in each facet. Search refinement should be improved, especially for the cases where no record, or too many records, match the faceted query. However, experience is being gained progressively, showing that freely faceted classification by phenomena, theories, and methods is feasible and successfully working.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
    Type
    a
  5. Gnoli, C.: Classification transcends library business : the case of BiblioPhil (2010) 0.02
    0.01974305 = product of:
      0.0394861 = sum of:
        0.0394861 = sum of:
          0.008285859 = weight(_text_:a in 3698) [ClassicSimilarity], result of:
            0.008285859 = score(doc=3698,freq=12.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.15602624 = fieldWeight in 3698, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3698)
          0.03120024 = weight(_text_:22 in 3698) [ClassicSimilarity], result of:
            0.03120024 = score(doc=3698,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.19345059 = fieldWeight in 3698, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3698)
      0.5 = coord(1/2)
    
    Abstract
    Although bibliographic classifications usually adopt a perspective different from that of object classifications, the two have obvious relationships. These become especially relevant when users are looking for knowledge scattered in a wide variety of forms and media. This is an increasingly common situation, as library catalogues now coexist in the global digital environment with catalogues of archives, of museums, of commercial products, and many other information resources. In order to make the subject content of all these resources searchable, a broader conception of classification is needed, that can be applied to an knowledge item, rather than only bibliographic materials. To illustrate this we take an example of the research on bagpipes in Northern Italian folklore. For this kind of research, the most effective search strategy is a cross-media one, looking for many different knowledge sources such as published documents, police archives, painting details, museum specimens, organizations devoted to related subjects. To provide satisfying results for this kind of search, the traditional disciplinary approach to classification is not sufficient. Tools are needed in which knowledge items dealing with a phenomenon of interest can be retrieved independently from the other topics with which it is combined, the disciplinary context, and the medium where it occurs. This can be made possible if the basic units of classification are taken to be the phenomena treated, as recommended in the León Manifesto, rather than disciplines or other aspect features. The concept of bagpipes should be retrievable and browsable in any combination with other phenomena, disciplines, media etc. Examples are given of information sources that could be managed by this freely-faceted technique of classification.
    Date
    22. 7.2010 20:40:08
    Type
    a
  6. Gnoli, C.; Pullman, T.; Cousson, P.; Merli, G.; Szostak, R.: Representing the structural elements of a freely faceted classification (2011) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 4825) [ClassicSimilarity], result of:
              0.010148063 = score(doc=4825,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 4825, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4825)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Freely faceted classifications allow for free combination of concepts across all knowledge domains, and for sorting of the resulting compound classmarks. Starting from work by the Classification Research Group, the Integrative Levels Classification (ILC) project has produced a first edition of a general freely faceted scheme. The system is managed as a MySQL database, and can be browsed through a Web interface. The ILC database structure provides a case for identifying and representing the structural elements of any freely faceted classification. These belong to both the notational and the verbal planes. Notational elements include: arrays, chains, deictics, facets, foci, place of definition of foci, examples of combinations, subclasses of a faceted class, groupings, related classes; verbal elements include: main caption, synonyms, descriptions, included terms, related terms, notes. Encoding of some of these elements in an international mark-up format like SKOS can be problematic, especially as this does not provide for faceted structures, although approximate SKOS equivalents are identified for most of them.
    Source
    Classification and ontology: formal approaches and access to knowledge: proceedings of the International UDC Seminar, 19-20 September 2011, The Hague, The Netherlands. Eds.: A. Slavic u. E. Civallero
    Type
    a
  7. Gnoli, C.; Santis, R. de; Pusterla, L.: Commerce, see also Rhetoric : cross-discipline relationships as authority data for enhanced retrieval (2015) 0.00
    0.0025370158 = product of:
      0.0050740317 = sum of:
        0.0050740317 = product of:
          0.010148063 = sum of:
            0.010148063 = weight(_text_:a in 2299) [ClassicSimilarity], result of:
              0.010148063 = score(doc=2299,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.19109234 = fieldWeight in 2299, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2299)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Subjects in a classification scheme are often related to other subjects belonging to different hierarchies. This problem was identified already by Hugh of Saint Victor (1096?-1141). Still with present-time bibliographic classifications, a user browsing the class of architecture under the hierarchy of arts may miss relevant items classified in building or in civil engineering under the hierarchy of applied sciences. To face these limitations we have developed SciGator, a browsable interface to explore the collections of all scientific libraries at the University of Pavia. Besides showing subclasses of a given class, the interface points users to related classes in the Dewey Decimal Classification, or in other local schemes, and allows for expanded queries that include them. This is made possible by using a special field for related classes in the database structure which models classification authority data. Ontologically, many relationships between classes in different hierarchies are cases of existential dependence. Dependence can occur between disciplines in such disciplinary classifications as Dewey (e.g. architecture existentially depends on building), or between phenomena in such phenomenon-based classifications as the Integrative Levels Classification (e.g. fishing as a human activity existentially depends on fish as a class of organisms). We provide an example of its representation in OWL and discuss some details of it.
    Source
    Classification and authority control: expanding resource discovery: proceedings of the International UDC Seminar 2015, 29-30 October 2015, Lisbon, Portugal. Eds.: Slavic, A. u. M.I. Cordeiro
    Type
    a
  8. Gnoli, C.: Classifying phenomena : Part 2: Types and levels (2017) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 3177) [ClassicSimilarity], result of:
              0.00994303 = score(doc=3177,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 3177, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3177)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    After making the case that phenomena can be the primary unit of classification (Part 1), some basic principles to group and sort phenomena are considered. Entities can be grouped together on the basis of both their similarity (morphology) and their common origin (phylogeny). The resulting groups will form the classical hierarchical chains of types and subtypes. At every hierarchical degree, phenomena can form ordered sets (arrays), where their sorting can reflect levels of increasing organization, corresponding to an evolutionary order of appearance (emergence). The theory of levels of reality has been investigated by many philosophers and applied to knowledge organization systems by various authors, which are briefly reviewed. At the broadest degree, it allows to identify some major strata of phenomena (forms, matter, life, minds, societies and culture) in turn divided into layers. A list of twenty-six layers is proposed to form the main classes of the Integrative Levels Classification system. A combination of morphology and phylogeny can determine whether a given phenomenon should be a type of an existing level, or a level on its own.
    Type
    a
  9. Santis, R. de; Gnoli, C.: Expressing dependence relationships in the Integrative Levels Classification using OWL (2016) 0.00
    0.0023435948 = product of:
      0.0046871896 = sum of:
        0.0046871896 = product of:
          0.009374379 = sum of:
            0.009374379 = weight(_text_:a in 4931) [ClassicSimilarity], result of:
              0.009374379 = score(doc=4931,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17652355 = fieldWeight in 4931, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4931)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Knowledge organization for a sustainable world: challenges and perspectives for cultural, scientific, and technological sharing in a connected society : proceedings of the Fourteenth International ISKO Conference 27-29 September 2016, Rio de Janeiro, Brazil / organized by International Society for Knowledge Organization (ISKO), ISKO-Brazil, São Paulo State University ; edited by José Augusto Chaves Guimarães, Suellen Oliveira Milani, Vera Dodebei
    Type
    a
  10. Gnoli, C.; Pusterla, L.; Bendiscioli, A.; Recinella, C.: Classification for collections mapping and query expansion (2016) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 3102) [ClassicSimilarity], result of:
              0.009076704 = score(doc=3102,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 3102, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3102)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Dewey Decimal Classification has been used to organize materials owned by the three scientific libraries at the University of Pavia, and to allow integrated browsing in their union catalogue through SciGator, a home built web-based user interface. Classification acts as a bridge between collections located in different places and shelved according to different local schemes. Furthermore, cross-discipline relationships recorded in the system allow for expanded queries that increase recall. Advantages and possible improvements of such a system are discussed.
    Type
    a
  11. Gnoli, C.: Notation (2018) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 4650) [ClassicSimilarity], result of:
              0.009076704 = score(doc=4650,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 4650, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4650)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Notations are systems of symbols that can be combined according to syntactical rules to represent meanings in a specialized domain. In knowledge organization, they are systems of numerals, letters and punctuation marks associated to a concept that mechanically produce helpful sequences of them for arranging books on shelves, browsing subjects in directories and displaying items in catalogues. Most bibliographic classification systems, like Dewey Decimal Classification, use a positional notation allowing for expression of increasingly specific subjects by additional digits. However, some notations like that of Bliss Bibliographic Classification are purely ordinal and do not reflect the hierarchical degree of a subject. Notations can also be expressive of the syntactical structure of compound subjects (common auxiliaries, facets etc.) in various ways. In the digital media, notation can be recorded and managed in databases and exploited to provide appropriate search and display functionalities.
    Type
    a
  12. Gnoli, C.: Classifying phenomena : Part 1: dimensions (2016) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 3417) [ClassicSimilarity], result of:
              0.008285859 = score(doc=3417,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 3417, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3417)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This is the first part of a study on the classification of phenomena. It starts by addressing the status of classification schemes among knowledge organization systems (KOSs), as some features of them have been overlooked in recent reviews of KOS types. It then considers the different dimensions implied in a KOS, which include: the observed phenomena, the cultural and disciplinary perspective under which they are treated, the features of documents carrying such treatment, the collections of such documents as managed in libraries, archives or museums, the information needs prompting to search and use these collections and the people experiencing such different information needs. Until now, most library classification schemes have given priority to the perspective dimension as they first list disciplines. However, an increasing number of voices are now considering the possibility of classification schemes giving priority to phenomena as advocated in the León Manifesto. Although these schemes first list phenomena as their main classes, they can as well express perspective or the other relevant dimensions that occur in a classified item. The independence of a phenomenon-based classification from the institutional divisions into disciplines contributes to giving knowledge organization a more proactive and influential role.
    Type
    a
  13. Gnoli, C.: Classifying phenomena : part 3: facets (2017) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 4158) [ClassicSimilarity], result of:
              0.008118451 = score(doc=4158,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 4158, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4158)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  14. Gnoli, C.: Fundamentos ontológicos de la organización del conocimiento : la teoría de los niveles integrativos aplicada al orden de cita (2011) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 2659) [ClassicSimilarity], result of:
              0.007654148 = score(doc=2659,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 2659, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2659)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The field of knowledge organization (KO) can be described as composed of the four distinct but connected layers of theory, systems, representation, and application. This paper focuses on the relations between KO theory and KO systems. It is acknowledged how the structure of KO systems is the product of a mixture of ontological, epistemological, and pragmatical factors. However, different systems give different priorities to each factor. A more ontologically-oriented approach, though not offering quick solutions for any particular group of users, will produce systems of wide and long-lasting application as they are based on general, shareable principles. I take the case of the ontological theory of integrative levels, which has been considered as a useful source for general classifications for several decades, and is currently implemented in the Integrative Levels Classification system. The theory produces a sequence of main classes modelling a natural order between phenomena. This order has interesting effects also on other features of the system, like the citation order of concepts within compounds. As it has been shown by facet analytical theory, it is useful that citation order follow a principle of inversion, as compared to the order of the same concepts in the schedules. In the light of integrative levels theory, this principle also acquires an ontological meaning: phenomena of lower level should be cited first, as most often they act as specifications of higher-level ones. This ontological principle should be complemented by consideration of the epistemological treatment of phenomena: in case a lower-level phenomenon is the main theme, it can be promoted to the leading position in the compound subject heading. The integration of these principles is believed to produce optimal results in the ordering of knowledge contents.
    Type
    a
  15. Gnoli, C.: Mentefacts as a missing level in theory of information science (2018) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 4624) [ClassicSimilarity], result of:
              0.007654148 = score(doc=4624,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 4624, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4624)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose The current debate between two theoretical approaches in library and information science and knowledge organization (KO), the cognitive one and the sociological one, is addressed in view of their possible integration in a more general model. The paper aims to discuss these issues. Design/methodology/approach Personal knowledge of individual users, as focused in the cognitive approach, and social production and use of knowledge, as focused in the sociological approach, are reconnected to the theory of levels of reality, particularly in the versions of Nicolai Hartmann and Karl R. Popper (three worlds). The notions of artefact and mentefact, as proposed in anthropological literature and applied in some KO systems, are also examined as further contributions to the generalized framework. Some criticisms to these models are reviewed and discussed. Findings Both the cognitive approach and the sociological approach, if taken in isolation, prove to be cases of philosophical monism as they emphasize a single level over the others. On the other hand, each of them can be considered as a component of a pluralist ontology and epistemology, where individual minds and social communities are but two successive levels in knowledge production and use, and are followed by a further level of "objectivated spirit"; this can in turn be analyzed into artefacts and mentefacts. While all these levels are relevant to information science, mentefacts and their properties are its most peculiar objects of study, which make it distinct from such other disciplines as psychology and sociology. Originality/value This analysis shows how existing approaches can benefit from additional notions contributed by levels theory, to develop more complete and accurate models of information and knowledge phenomena.
    Content
    Vgl.: https://www.emeraldinsight.com/doi/full/10.1108/JD-04-2018-0054. Vgl. auch den Folgeartikel von B. Hjoerland: The foundation of information science: one world or three? A discussion of Gnoli (2018). In: Journal of documentation. 74(2019) no.1, S.164-171.
    Type
    a
  16. Gnoli, C.; Ledl, A.; Park, Z.; Trzmielewski, M.: Phenomenon-based vs. disciplinary classification : possibilities for evaluating and for mapping (2018) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 4804) [ClassicSimilarity], result of:
              0.007654148 = score(doc=4804,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 4804, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4804)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  17. Gnoli, C.: Metadata about what? : distinguishing between ontic, epistemic, and documental dimensions in knowledge organization (2012) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 323) [ClassicSimilarity], result of:
              0.006765375 = score(doc=323,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 323, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=323)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The spread of many new media and formats is changing the scenario faced by knowledge organizers: as printed monographs are not the only standard form of knowledge carrier anymore, the traditional kind of knowledge organization (KO) systems based on academic disciplines is put into question. A sounder foundation can be provided by an analysis of the different dimensions concurring to form the content of any knowledge item-what Brian Vickery described as the steps "from the world to the classifier." The ultimate referents of documents are the phenomena of the real world, that can be ordered by ontology, the study of what exists. Phenomena coexist in subjects with the perspectives by which they are considered, pertaining to epistemology, and with the formal features of knowledge carriers, adding a further, pragmatic layer. All these dimensions can be accounted for in metadata, but are often done so in mixed ways, making indexes less rigorous and interoperable. For example, while facet analysis was originally developed for subject indexing, many "faceted" interfaces today mix subject facets with form facets, and schemes presented as "ontologies" for the "semantic Web" also code for non-semantic information. In bibliographic classifications, phenomena are often confused with the disciplines dealing with them, the latter being assumed to be the most useful starting point, for users will have either one or another perspective. A general citation order of dimensions- phenomena, perspective, carrier-is recommended, helping to concentrate most relevant information at the beginning of headings.
    Type
    a
  18. Gnoli, C.; Ridi, C.R.: Unified Theory of Information, hypertextuality and levels of reality : without, within, and withal knowledge management (2014) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 1796) [ClassicSimilarity], result of:
              0.006765375 = score(doc=1796,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 1796, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1796)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The different senses of the term information in physical, biological and social interpretations, and the possibility of connections between them, are addressed. Special attention is paid to Hofkirchner's Unified Theory of Information (UTI), proposing an integrated view in which the notion of information gets additional properties as one moves from the physical to the biological and the social realms. The paper aims to discuss these issues. Design/methodology/approach - UTI is compared to other views of information, especially to two theories complementing several ideas of it: the theory of the hypertextual documental universe ("docuverse") and the theory of integrative levels of reality. Two alternative applications of the complex of these three theories are discussed: a pragmatical, hermeneutic one, and a more ambitious realist, ontological one. The latter can be extended until considering information ("bit") together with matter-energy ("it") as a fundamental element in the world. Problems and opportunities with each view are discussed. Findings - It is found that the common ground for all three theories is an evolutionary approach, paying attention to the phylogenetic connections between the different meanings of information. Research limitations/implications - Other theories of information, like Leontiev's, are not discussed as not especially related to the focus of the approach. Originality/value - The paper builds on previously unnoticed affinities between different families of information-related theories, showing how each of them can provide fruitful complements to the other ones in clarifying the nature of information.
    Type
    a
  19. Gnoli, C.: Animals belonging to the emperor : enabling viewpoint warrant in classification (2011) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 1803) [ClassicSimilarity], result of:
              0.006765375 = score(doc=1803,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 1803, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1803)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  20. Gnoli, C.: Workshop on Levels of reality as a KO paradigm : levels, types, facets: three structural principles for KO (2010) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 3524) [ClassicSimilarity], result of:
              0.005740611 = score(doc=3524,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 3524, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3524)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a