Search (3 results, page 1 of 1)

  • × author_ss:"Manning, C.D."
  • × year_i:[2000 TO 2010}
  1. Toutanova, K.; Klein, D.; Manning, C.D.; Singer, Y.: Feature-rich Part-of-Speech Tagging with a cyclic dependency network (2003) 0.01
    0.012498461 = product of:
      0.024996921 = sum of:
        0.024996921 = product of:
          0.049993843 = sum of:
            0.049993843 = weight(_text_:i in 1059) [ClassicSimilarity], result of:
              0.049993843 = score(doc=1059,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.29170483 = fieldWeight in 1059, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1059)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present a new part-of-speech tagger that demonstrates the following ideas: (i) explicit use of both preceding and following tag contexts via a dependency network representation, (ii) broad use of lexical features, including jointly conditioning on multiple consecutive words, (iii) effective use of priors in conditional loglinear models, and (iv) fine-grained modeling of unknown word features. Using these ideas together, the resulting tagger gives a 97.24%accuracy on the Penn TreebankWSJ, an error reduction of 4.4% on the best previous single automatically learned tagging result.
  2. Toutanova, K.; Manning, C.D.: Enriching the knowledge sources used in a maximum entropy Part-of-Speech Tagger (2000) 0.01
    0.012498461 = product of:
      0.024996921 = sum of:
        0.024996921 = product of:
          0.049993843 = sum of:
            0.049993843 = weight(_text_:i in 1060) [ClassicSimilarity], result of:
              0.049993843 = score(doc=1060,freq=2.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.29170483 = fieldWeight in 1060, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1060)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper presents results for a maximumentropy-based part of speech tagger, which achieves superior performance principally by enriching the information sources used for tagging. In particular, we get improved results by incorporating these features: (i) more extensive treatment of capitalization for unknown words; (ii) features for the disambiguation of the tense forms of verbs; (iii) features for disambiguating particles from prepositions and adverbs. The best resulting accuracy for the tagger on the Penn Treebank is 96.86% overall, and 86.91% on previously unseen words.
  3. Manning, C.D.; Raghavan, P.; Schütze, H.: Introduction to information retrieval (2008) 0.01
    0.012370269 = product of:
      0.024740538 = sum of:
        0.024740538 = product of:
          0.049481075 = sum of:
            0.049481075 = weight(_text_:i in 4041) [ClassicSimilarity], result of:
              0.049481075 = score(doc=4041,freq=6.0), product of:
                0.17138503 = queryWeight, product of:
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.045439374 = queryNorm
                0.28871292 = fieldWeight in 4041, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.7717297 = idf(docFreq=2765, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4041)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Class-tested and coherent, this textbook teaches information retrieval, including web search, text classification, and text clustering from basic concepts. Ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students. Slides and additional exercises are available for lecturers. - This book provides what Salton and Van Rijsbergen both failed to achieve. Even more important, unlike some other books in IR, the authors appear to care about making the theory as accessible as possible to the reader, on occasion including short primers to certain topics or choosing to explain difficult concepts using simplified approaches. Its coverage [is] excellent, the quality of writing high and I was surprised how much I learned from reading it. I think the online resources are impressive.