Search (117 results, page 1 of 6)

  • × theme_ss:"Automatisches Abstracting"
  1. Goh, A.; Hui, S.C.: TES: a text extraction system (1996) 0.02
    0.021601483 = product of:
      0.043202966 = sum of:
        0.043202966 = product of:
          0.06480445 = sum of:
            0.015208736 = weight(_text_:a in 6599) [ClassicSimilarity], result of:
              0.015208736 = score(doc=6599,freq=16.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.28826174 = fieldWeight in 6599, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6599)
            0.049595714 = weight(_text_:22 in 6599) [ClassicSimilarity], result of:
              0.049595714 = score(doc=6599,freq=2.0), product of:
                0.1602338 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045757167 = queryNorm
                0.30952093 = fieldWeight in 6599, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6599)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    With the onset of the information explosion arising from digital libraries and access to a wealth of information through the Internet, the need to efficiently determine the relevance of a document becomes even more urgent. Describes a text extraction system (TES), which retrieves a set of sentences from a document to form an indicative abstract. Such an automated process enables information to be filtered more quickly. Discusses the combination of various text extraction techniques. Compares results with manually produced abstracts
    Date
    26. 2.1997 10:22:43
    Type
    a
  2. Robin, J.; McKeown, K.: Empirically designing and evaluating a new revision-based model for summary generation (1996) 0.02
    0.020922288 = product of:
      0.041844577 = sum of:
        0.041844577 = product of:
          0.062766865 = sum of:
            0.013171151 = weight(_text_:a in 6751) [ClassicSimilarity], result of:
              0.013171151 = score(doc=6751,freq=12.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.24964198 = fieldWeight in 6751, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6751)
            0.049595714 = weight(_text_:22 in 6751) [ClassicSimilarity], result of:
              0.049595714 = score(doc=6751,freq=2.0), product of:
                0.1602338 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045757167 = queryNorm
                0.30952093 = fieldWeight in 6751, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6751)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Presents a system for summarizing quantitative data in natural language, focusing on the use of a corpus of basketball game summaries, drawn from online news services, to empirically shape the system design and to evaluate the approach. Initial corpus analysis revealed characteristics of textual summaries that challenge the capabilities of current language generation systems. A revision based corpus analysis was used to identify and encode the revision rules of the system. Presents a quantitative evaluation, using several test corpora, to measure the robustness of the new revision based model
    Date
    6. 3.1997 16:22:15
    Type
    a
  3. Jones, P.A.; Bradbeer, P.V.G.: Discovery of optimal weights in a concept selection system (1996) 0.02
    0.020116638 = product of:
      0.040233277 = sum of:
        0.040233277 = product of:
          0.06034991 = sum of:
            0.0107542 = weight(_text_:a in 6974) [ClassicSimilarity], result of:
              0.0107542 = score(doc=6974,freq=8.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.20383182 = fieldWeight in 6974, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6974)
            0.049595714 = weight(_text_:22 in 6974) [ClassicSimilarity], result of:
              0.049595714 = score(doc=6974,freq=2.0), product of:
                0.1602338 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045757167 = queryNorm
                0.30952093 = fieldWeight in 6974, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6974)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Describes the application of weighting strategies to model uncertainties and probabilities in automatic abstracting systems, particularly in the concept selection phase. The weights were originally assigned in an ad hoc manner and were then refined by manual analysis of the results. The new method attempts to derive a more systematic methods and performs this using a genetic algorithm
    Source
    Information retrieval: new systems and current research. Proceedings of the 16th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Drymen, Scotland, 22-23 Mar 94. Ed.: R. Leon
    Type
    a
  4. Kuhlen, R.: Abstracts, abstracting : intellektuelle und maschinelle Verfahren (1990) 0.02
    0.017745905 = product of:
      0.03549181 = sum of:
        0.03549181 = product of:
          0.053237714 = sum of:
            0.043827787 = weight(_text_:m in 2333) [ClassicSimilarity], result of:
              0.043827787 = score(doc=2333,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.38491225 = fieldWeight in 2333, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.109375 = fieldNorm(doc=2333)
            0.009409925 = weight(_text_:a in 2333) [ClassicSimilarity], result of:
              0.009409925 = score(doc=2333,freq=2.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.17835285 = fieldWeight in 2333, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=2333)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Grundlagen der praktischen Information und Dokumentation. 3. Aufl. Hrsg.: M. Buder u.a. Bd.1
    Type
    a
  5. Pinto, M.: Engineering the production of meta-information : the abstracting concern (2003) 0.02
    0.017745905 = product of:
      0.03549181 = sum of:
        0.03549181 = product of:
          0.053237714 = sum of:
            0.043827787 = weight(_text_:m in 4667) [ClassicSimilarity], result of:
              0.043827787 = score(doc=4667,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.38491225 = fieldWeight in 4667, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4667)
            0.009409925 = weight(_text_:a in 4667) [ClassicSimilarity], result of:
              0.009409925 = score(doc=4667,freq=2.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.17835285 = fieldWeight in 4667, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4667)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Type
    a
  6. Vanderwende, L.; Suzuki, H.; Brockett, J.M.; Nenkova, A.: Beyond SumBasic : task-focused summarization with sentence simplification and lexical expansion (2007) 0.02
    0.0154048195 = product of:
      0.030809639 = sum of:
        0.030809639 = product of:
          0.046214458 = sum of:
            0.009017671 = weight(_text_:a in 948) [ClassicSimilarity], result of:
              0.009017671 = score(doc=948,freq=10.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.1709182 = fieldWeight in 948, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=948)
            0.037196785 = weight(_text_:22 in 948) [ClassicSimilarity], result of:
              0.037196785 = score(doc=948,freq=2.0), product of:
                0.1602338 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045757167 = queryNorm
                0.23214069 = fieldWeight in 948, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=948)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    In recent years, there has been increased interest in topic-focused multi-document summarization. In this task, automatic summaries are produced in response to a specific information request, or topic, stated by the user. The system we have designed to accomplish this task comprises four main components: a generic extractive summarization system, a topic-focusing component, sentence simplification, and lexical expansion of topic words. This paper details each of these components, together with experiments designed to quantify their individual contributions. We include an analysis of our results on two large datasets commonly used to evaluate task-focused summarization, the DUC2005 and DUC2006 datasets, using automatic metrics. Additionally, we include an analysis of our results on the DUC2006 task according to human evaluation metrics. In the human evaluation of system summaries compared to human summaries, i.e., the Pyramid method, our system ranked first out of 22 systems in terms of overall mean Pyramid score; and in the human evaluation of summary responsiveness to the topic, our system ranked third out of 35 systems.
    Type
    a
  7. Kuhlen, R.: Abstracts, abstracting : intellektuelle und maschinelle Verfahren (1997) 0.02
    0.015210776 = product of:
      0.030421551 = sum of:
        0.030421551 = product of:
          0.045632325 = sum of:
            0.037566677 = weight(_text_:m in 7800) [ClassicSimilarity], result of:
              0.037566677 = score(doc=7800,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.3299248 = fieldWeight in 7800, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.09375 = fieldNorm(doc=7800)
            0.00806565 = weight(_text_:a in 7800) [ClassicSimilarity], result of:
              0.00806565 = score(doc=7800,freq=2.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.15287387 = fieldWeight in 7800, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=7800)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Grundlagen der praktischen Information und Dokumentation: ein Handbuch zur Einführung in die fachliche Informationsarbeit. 4. Aufl. Hrsg.: M. Buder u.a
    Type
    a
  8. Haag, M.: Automatic text summarization (2002) 0.02
    0.015210776 = product of:
      0.030421551 = sum of:
        0.030421551 = product of:
          0.045632325 = sum of:
            0.037566677 = weight(_text_:m in 5662) [ClassicSimilarity], result of:
              0.037566677 = score(doc=5662,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.3299248 = fieldWeight in 5662, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.09375 = fieldNorm(doc=5662)
            0.00806565 = weight(_text_:a in 5662) [ClassicSimilarity], result of:
              0.00806565 = score(doc=5662,freq=2.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.15287387 = fieldWeight in 5662, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=5662)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Type
    a
  9. Wu, Y.-f.B.; Li, Q.; Bot, R.S.; Chen, X.: Finding nuggets in documents : a machine learning approach (2006) 0.01
    0.013874916 = product of:
      0.027749833 = sum of:
        0.027749833 = product of:
          0.041624747 = sum of:
            0.010627427 = weight(_text_:a in 5290) [ClassicSimilarity], result of:
              0.010627427 = score(doc=5290,freq=20.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.20142901 = fieldWeight in 5290, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5290)
            0.030997321 = weight(_text_:22 in 5290) [ClassicSimilarity], result of:
              0.030997321 = score(doc=5290,freq=2.0), product of:
                0.1602338 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045757167 = queryNorm
                0.19345059 = fieldWeight in 5290, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5290)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Document keyphrases provide a concise summary of a document's content, offering semantic metadata summarizing a document. They can be used in many applications related to knowledge management and text mining, such as automatic text summarization, development of search engines, document clustering, document classification, thesaurus construction, and browsing interfaces. Because only a small portion of documents have keyphrases assigned by authors, and it is time-consuming and costly to manually assign keyphrases to documents, it is necessary to develop an algorithm to automatically generate keyphrases for documents. This paper describes a Keyphrase Identification Program (KIP), which extracts document keyphrases by using prior positive samples of human identified phrases to assign weights to the candidate keyphrases. The logic of our algorithm is: The more keywords a candidate keyphrase contains and the more significant these keywords are, the more likely this candidate phrase is a keyphrase. KIP's learning function can enrich the glossary database by automatically adding new identified keyphrases to the database. KIP's personalization feature will let the user build a glossary database specifically suitable for the area of his/her interest. The evaluation results show that KIP's performance is better than the systems we compared to and that the learning function is effective.
    Date
    22. 7.2006 17:25:48
    Type
    a
  10. Oh, H.; Nam, S.; Zhu, Y.: Structured abstract summarization of scientific articles : summarization using full-text section information (2023) 0.01
    0.013296289 = product of:
      0.026592579 = sum of:
        0.026592579 = product of:
          0.039888866 = sum of:
            0.008891543 = weight(_text_:a in 889) [ClassicSimilarity], result of:
              0.008891543 = score(doc=889,freq=14.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.1685276 = fieldWeight in 889, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=889)
            0.030997321 = weight(_text_:22 in 889) [ClassicSimilarity], result of:
              0.030997321 = score(doc=889,freq=2.0), product of:
                0.1602338 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045757167 = queryNorm
                0.19345059 = fieldWeight in 889, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=889)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    The automatic summarization of scientific articles differs from other text genres because of the structured format and longer text length. Previous approaches have focused on tackling the lengthy nature of scientific articles, aiming to improve the computational efficiency of summarizing long text using a flat, unstructured abstract. However, the structured format of scientific articles and characteristics of each section have not been fully explored, despite their importance. The lack of a sufficient investigation and discussion of various characteristics for each section and their influence on summarization results has hindered the practical use of automatic summarization for scientific articles. To provide a balanced abstract proportionally emphasizing each section of a scientific article, the community introduced the structured abstract, an abstract with distinct, labeled sections. Using this information, in this study, we aim to understand tasks ranging from data preparation to model evaluation from diverse viewpoints. Specifically, we provide a preprocessed large-scale dataset and propose a summarization method applying the introduction, methods, results, and discussion (IMRaD) format reflecting the characteristics of each section. We also discuss the objective benchmarks and perspectives of state-of-the-art algorithms and present the challenges and research directions in this area.
    Date
    22. 1.2023 18:57:12
    Type
    a
  11. Kim, H.H.; Kim, Y.H.: Generic speech summarization of transcribed lecture videos : using tags and their semantic relations (2016) 0.01
    0.012837349 = product of:
      0.025674699 = sum of:
        0.025674699 = product of:
          0.038512047 = sum of:
            0.007514726 = weight(_text_:a in 2640) [ClassicSimilarity], result of:
              0.007514726 = score(doc=2640,freq=10.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.14243183 = fieldWeight in 2640, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2640)
            0.030997321 = weight(_text_:22 in 2640) [ClassicSimilarity], result of:
              0.030997321 = score(doc=2640,freq=2.0), product of:
                0.1602338 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045757167 = queryNorm
                0.19345059 = fieldWeight in 2640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2640)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    We propose a tag-based framework that simulates human abstractors' ability to select significant sentences based on key concepts in a sentence as well as the semantic relations between key concepts to create generic summaries of transcribed lecture videos. The proposed extractive summarization method uses tags (viewer- and author-assigned terms) as key concepts. Our method employs Flickr tag clusters and WordNet synonyms to expand tags and detect the semantic relations between tags. This method helps select sentences that have a greater number of semantically related key concepts. To investigate the effectiveness and uniqueness of the proposed method, we compare it with an existing technique, latent semantic analysis (LSA), using intrinsic and extrinsic evaluations. The results of intrinsic evaluation show that the tag-based method is as or more effective than the LSA method. We also observe that in the extrinsic evaluation, the grand mean accuracy score of the tag-based method is higher than that of the LSA method, with a statistically significant difference. Elaborating on our results, we discuss the theoretical and practical implications of our findings for speech video summarization and retrieval.
    Date
    22. 1.2016 12:29:41
    Type
    a
  12. Jiang, Y.; Meng, R.; Huang, Y.; Lu, W.; Liu, J.: Generating keyphrases for readers : a controllable keyphrase generation framework (2023) 0.01
    0.012837349 = product of:
      0.025674699 = sum of:
        0.025674699 = product of:
          0.038512047 = sum of:
            0.007514726 = weight(_text_:a in 1012) [ClassicSimilarity], result of:
              0.007514726 = score(doc=1012,freq=10.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.14243183 = fieldWeight in 1012, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1012)
            0.030997321 = weight(_text_:22 in 1012) [ClassicSimilarity], result of:
              0.030997321 = score(doc=1012,freq=2.0), product of:
                0.1602338 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045757167 = queryNorm
                0.19345059 = fieldWeight in 1012, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1012)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    With the wide application of keyphrases in many Information Retrieval (IR) and Natural Language Processing (NLP) tasks, automatic keyphrase prediction has been emerging. However, these statistically important phrases are contributing increasingly less to the related tasks because the end-to-end learning mechanism enables models to learn the important semantic information of the text directly. Similarly, keyphrases are of little help for readers to quickly grasp the paper's main idea because the relationship between the keyphrase and the paper is not explicit to readers. Therefore, we propose to generate keyphrases with specific functions for readers to bridge the semantic gap between them and the information producers, and verify the effectiveness of the keyphrase function for assisting users' comprehension with a user experiment. A controllable keyphrase generation framework (the CKPG) that uses the keyphrase function as a control code to generate categorized keyphrases is proposed and implemented based on Transformer, BART, and T5, respectively. For the Computer Science domain, the Macro-avgs of , , and on the Paper with Code dataset are up to 0.680, 0.535, and 0.558, respectively. Our experimental results indicate the effectiveness of the CKPG models.
    Date
    22. 6.2023 14:55:20
    Type
    a
  13. Gomez, J.; Allen, K.; Matney, M.; Awopetu, T.; Shafer, S.: Experimenting with a machine generated annotations pipeline (2020) 0.01
    0.011452621 = product of:
      0.022905242 = sum of:
        0.022905242 = product of:
          0.03435786 = sum of:
            0.02504445 = weight(_text_:m in 657) [ClassicSimilarity], result of:
              0.02504445 = score(doc=657,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.21994986 = fieldWeight in 657, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.0625 = fieldNorm(doc=657)
            0.009313411 = weight(_text_:a in 657) [ClassicSimilarity], result of:
              0.009313411 = score(doc=657,freq=6.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.17652355 = fieldWeight in 657, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=657)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    The UCLA Library reorganized its software developers into focused subteams with one, the Labs Team, dedicated to conducting experiments. In this article we describe our first attempt at conducting a software development experiment, in which we attempted to improve our digital library's search results with metadata from cloud-based image tagging services. We explore the findings and discuss the lessons learned from our first attempt at running an experiment.
    Type
    a
  14. Plaza, L.; Stevenson, M.; Díaz, A.: Resolving ambiguity in biomedical text to improve summarization (2012) 0.01
    0.010811503 = product of:
      0.021623006 = sum of:
        0.021623006 = product of:
          0.03243451 = sum of:
            0.021913894 = weight(_text_:m in 2734) [ClassicSimilarity], result of:
              0.021913894 = score(doc=2734,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.19245613 = fieldWeight in 2734, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2734)
            0.010520617 = weight(_text_:a in 2734) [ClassicSimilarity], result of:
              0.010520617 = score(doc=2734,freq=10.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.19940455 = fieldWeight in 2734, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2734)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Access to the vast body of research literature that is now available on biomedicine and related fields can be improved with automatic summarization. This paper describes a summarization system for the biomedical domain that represents documents as graphs formed from concepts and relations in the UMLS Metathesaurus. This system has to deal with the ambiguities that occur in biomedical documents. We describe a variety of strategies that make use of MetaMap and Word Sense Disambiguation (WSD) to accurately map biomedical documents onto UMLS Metathesaurus concepts. Evaluation is carried out using a collection of 150 biomedical scientific articles from the BioMed Central corpus. We find that using WSD improves the quality of the summaries generated.
    Type
    a
  15. Haag, M.: Automatic text summarization : Evaluation des Copernic Summarizer und mögliche Einsatzfelder in der Fachinformation der DaimlerCrysler AG (2002) 0.01
    0.010755643 = product of:
      0.021511286 = sum of:
        0.021511286 = product of:
          0.03226693 = sum of:
            0.026563652 = weight(_text_:m in 649) [ClassicSimilarity], result of:
              0.026563652 = score(doc=649,freq=4.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.23329206 = fieldWeight in 649, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.046875 = fieldNorm(doc=649)
            0.005703276 = weight(_text_:a in 649) [ClassicSimilarity], result of:
              0.005703276 = score(doc=649,freq=4.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.10809815 = fieldWeight in 649, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=649)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    An evaluation of the Copernic Summarizer, a software for automatically summarizing text in various data formats, is being presented. It shall be assessed if and how the Copernic Summarizer can reasonably be used in the DaimlerChrysler Information Division in order to enhance the quality of its information services. First, an introduction into Automatic Text Summarization is given and the Copernic Summarizer is being presented. Various methods for evaluating Automatic Text Summarization systems and software ergonomics are presented. Two evaluation forms are developed with which the employees of the Information Division shall evaluate the quality and relevance of the extracted keywords and summaries as well as the software's usability. The quality and relevance assessment is done by comparing the original text to the summaries. Finally, a recommendation is given concerning the use of the Copernic Summarizer.
    Type
    m
  16. Moens, M.-F.; Uyttendaele, C.: Automatic text structuring and categorization as a first step in summarizing legal cases (1997) 0.01
    0.010293938 = product of:
      0.020587876 = sum of:
        0.020587876 = product of:
          0.030881815 = sum of:
            0.018783338 = weight(_text_:m in 2256) [ClassicSimilarity], result of:
              0.018783338 = score(doc=2256,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.1649624 = fieldWeight in 2256, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2256)
            0.012098475 = weight(_text_:a in 2256) [ClassicSimilarity], result of:
              0.012098475 = score(doc=2256,freq=18.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.22931081 = fieldWeight in 2256, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2256)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    The SALOMON system automatically summarizes Belgian criminal cases in order to improve access to the large number of existing and future court decisions. SALOMON extracts relevant text units from the case text to form a case summary. Such a case profile facilitates the rapid determination of the relevance of the case or may be employed in text search. In a first important abstracting step SALOMON performs an initial categorization of legal criminal cases and structures the case text into separate legally relevant and irrelevant components. A text grammar represented as a semantic network is used to automatically determine the category of the case and its components. Extracts from the case general data and identifies text portions relevant for further abstracting. Prior knowledge of the text structure and its indicative cues may support automatic abstracting. A text grammar is a promising form for representing the knowledge involved
    Type
    a
  17. Steinberger, J.; Poesio, M.; Kabadjov, M.A.; Jezek, K.: Two uses of anaphora resolution in summarization (2007) 0.01
    0.010293938 = product of:
      0.020587876 = sum of:
        0.020587876 = product of:
          0.030881815 = sum of:
            0.018783338 = weight(_text_:m in 949) [ClassicSimilarity], result of:
              0.018783338 = score(doc=949,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.1649624 = fieldWeight in 949, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.046875 = fieldNorm(doc=949)
            0.012098475 = weight(_text_:a in 949) [ClassicSimilarity], result of:
              0.012098475 = score(doc=949,freq=18.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.22931081 = fieldWeight in 949, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=949)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    We propose a new method for using anaphoric information in Latent Semantic Analysis (lsa), and discuss its application to develop an lsa-based summarizer which achieves a significantly better performance than a system not using anaphoric information, and a better performance by the rouge measure than all but one of the single-document summarizers participating in DUC-2002. Anaphoric information is automatically extracted using a new release of our own anaphora resolution system, guitar, which incorporates proper noun resolution. Our summarizer also includes a new approach for automatically identifying the dimensionality reduction of a document on the basis of the desired summarization percentage. Anaphoric information is also used to check the coherence of the summary produced by our summarizer, by a reference checker module which identifies anaphoric resolution errors caused by sentence extraction.
    Type
    a
  18. Lee, J.-H.; Park, S.; Ahn, C.-M.; Kim, D.: Automatic generic document summarization based on non-negative matrix factorization (2009) 0.01
    0.010021043 = product of:
      0.020042086 = sum of:
        0.020042086 = product of:
          0.030063128 = sum of:
            0.021913894 = weight(_text_:m in 2448) [ClassicSimilarity], result of:
              0.021913894 = score(doc=2448,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.19245613 = fieldWeight in 2448, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2448)
            0.008149235 = weight(_text_:a in 2448) [ClassicSimilarity], result of:
              0.008149235 = score(doc=2448,freq=6.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.1544581 = fieldWeight in 2448, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2448)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    In existing unsupervised methods, Latent Semantic Analysis (LSA) is used for sentence selection. However, the obtained results are less meaningful, because singular vectors are used as the bases for sentence selection from given documents, and singular vector components can have negative values. We propose a new unsupervised method using Non-negative Matrix Factorization (NMF) to select sentences for automatic generic document summarization. The proposed method uses non-negative constraints, which are more similar to the human cognition process. As a result, the method selects more meaningful sentences for generic document summarization than those selected using LSA.
    Type
    a
  19. Ye, S.; Chua, T.-S.; Kan, M.-Y.; Qiu, L.: Document concept lattice for text understanding and summarization (2007) 0.01
    0.009817731 = product of:
      0.019635461 = sum of:
        0.019635461 = product of:
          0.029453192 = sum of:
            0.018783338 = weight(_text_:m in 941) [ClassicSimilarity], result of:
              0.018783338 = score(doc=941,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.1649624 = fieldWeight in 941, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.046875 = fieldNorm(doc=941)
            0.010669853 = weight(_text_:a in 941) [ClassicSimilarity], result of:
              0.010669853 = score(doc=941,freq=14.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.20223314 = fieldWeight in 941, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=941)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    We argue that the quality of a summary can be evaluated based on how many concepts in the original document(s) that can be preserved after summarization. Here, a concept refers to an abstract or concrete entity or its action often expressed by diverse terms in text. Summary generation can thus be considered as an optimization problem of selecting a set of sentences with minimal answer loss. In this paper, we propose a document concept lattice that indexes the hierarchy of local topics tied to a set of frequent concepts and the corresponding sentences containing these topics. The local topics will specify the promising sub-spaces related to the selected concepts and sentences. Based on this lattice, the summary is an optimized selection of a set of distinct and salient local topics that lead to maximal coverage of concepts with the given number of sentences. Our summarizer based on the concept lattice has demonstrated competitive performance in Document Understanding Conference 2005 and 2006 evaluations as well as follow-on tests.
    Type
    a
  20. Uyttendaele, C.; Moens, M.-F.; Dumortier, J.: SALOMON: automatic abstracting of legal cases for effective access to court decisions (1998) 0.01
    0.009522572 = product of:
      0.019045144 = sum of:
        0.019045144 = product of:
          0.028567716 = sum of:
            0.021913894 = weight(_text_:m in 495) [ClassicSimilarity], result of:
              0.021913894 = score(doc=495,freq=2.0), product of:
                0.11386436 = queryWeight, product of:
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.045757167 = queryNorm
                0.19245613 = fieldWeight in 495, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4884486 = idf(docFreq=9980, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=495)
            0.0066538225 = weight(_text_:a in 495) [ClassicSimilarity], result of:
              0.0066538225 = score(doc=495,freq=4.0), product of:
                0.05276016 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045757167 = queryNorm
                0.12611452 = fieldWeight in 495, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=495)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    The SALOMON project summarises Belgian criminal cases in order to improve access to the large number of existing and future cases. A double methodology was used when developing SALOMON: the cases are processed by employing additional knowledge to interpret structural patterns and features on the one hand and by way of occurrence statistics of index terms on the other. SALOMON performs an initial categorisation and structuring of the cases and subsequently extracts the most relevant text units of the alleged offences and of the opinion of the court. The SALOMON techniques do not themselves solve any legal questions, but they do guide the use effectively towards relevant texts
    Type
    a

Years

Languages

  • e 98
  • d 17
  • chi 2
  • More… Less…

Types

  • a 109
  • m 5
  • s 2
  • el 1
  • r 1
  • x 1
  • More… Less…