Search (2 results, page 1 of 1)

  • × author_ss:"Aliguliyev, R.M."
  • × theme_ss:"Automatisches Abstracting"
  1. Abdi, A.; Idris, N.; Alguliev, R.M.; Aliguliyev, R.M.: Automatic summarization assessment through a combination of semantic and syntactic information for intelligent educational systems (2015) 0.00
    0.0044022407 = product of:
      0.013206721 = sum of:
        0.013206721 = weight(_text_:a in 2681) [ClassicSimilarity], result of:
          0.013206721 = score(doc=2681,freq=22.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.25351265 = fieldWeight in 2681, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2681)
      0.33333334 = coord(1/3)
    
    Abstract
    Summary writing is a process for creating a short version of a source text. It can be used as a measure of understanding. As grading students' summaries is a very time-consuming task, computer-assisted assessment can help teachers perform the grading more effectively. Several techniques, such as BLEU, ROUGE, N-gram co-occurrence, Latent Semantic Analysis (LSA), LSA_Ngram and LSA_ERB, have been proposed to support the automatic assessment of students' summaries. Since these techniques are more suitable for long texts, their performance is not satisfactory for the evaluation of short summaries. This paper proposes a specialized method that works well in assessing short summaries. Our proposed method integrates the semantic relations between words, and their syntactic composition. As a result, the proposed method is able to obtain high accuracy and improve the performance compared with the current techniques. Experiments have displayed that it is to be preferred over the existing techniques. A summary evaluation system based on the proposed method has also been developed.
    Type
    a
  2. Abdi, A.; Shamsuddin, S.M.; Aliguliyev, R.M.: QMOS: Query-based multi-documents opinion-oriented summarization (2018) 0.00
    0.003754243 = product of:
      0.011262729 = sum of:
        0.011262729 = weight(_text_:a in 5089) [ClassicSimilarity], result of:
          0.011262729 = score(doc=5089,freq=36.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2161963 = fieldWeight in 5089, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=5089)
      0.33333334 = coord(1/3)
    
    Abstract
    Sentiment analysis concerns the study of opinions expressed in a text. This paper presents the QMOS method, which employs a combination of sentiment analysis and summarization approaches. It is a lexicon-based method to query-based multi-documents summarization of opinion expressed in reviews. QMOS combines multiple sentiment dictionaries to improve word coverage limit of the individual lexicon. A major problem for a dictionary-based approach is the semantic gap between the prior polarity of a word presented by a lexicon and the word polarity in a specific context. This is due to the fact that, the polarity of a word depends on the context in which it is being used. Furthermore, the type of a sentence can also affect the performance of a sentiment analysis approach. Therefore, to tackle the aforementioned challenges, QMOS integrates multiple strategies to adjust word prior sentiment orientation while also considers the type of sentence. QMOS also employs the Semantic Sentiment Approach to determine the sentiment score of a word if it is not included in a sentiment lexicon. On the other hand, the most of the existing methods fail to distinguish the meaning of a review sentence and user's query when both of them share the similar bag-of-words; hence there is often a conflict between the extracted opinionated sentences and users' needs. However, the summarization phase of QMOS is able to avoid extracting a review sentence whose similarity with the user's query is high but whose meaning is different. The method also employs the greedy algorithm and query expansion approach to reduce redundancy and bridge the lexical gaps for similar contexts that are expressed using different wording, respectively. Our experiment shows that the QMOS method can significantly improve the performance and make QMOS comparable to other existing methods.
    Type
    a