Search (2 results, page 1 of 1)

  • × author_ss:"Ehrig, M."
  • × theme_ss:"Wissensrepräsentation"
  1. Krötzsch, M.; Hitzler, P.; Ehrig, M.; Sure, Y.: Category theory in ontology research : concrete gain from an abstract approach (2004 (?)) 0.00
    0.0022989952 = product of:
      0.006896985 = sum of:
        0.006896985 = weight(_text_:a in 4538) [ClassicSimilarity], result of:
          0.006896985 = score(doc=4538,freq=6.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.13239266 = fieldWeight in 4538, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4538)
      0.33333334 = coord(1/3)
    
    Abstract
    The focus of research on representing and reasoning with knowledge traditionally has been on single specifications and appropriate inference paradigms to draw conclusions from such data. Accordingly, this is also an essential aspect of ontology research which has received much attention in recent years. But ontologies introduce another new challenge based on the distributed nature of most of their applications, which requires to relate heterogeneous ontological specifications and to integrate information from multiple sources. These problems have of course been recognized, but many current approaches still lack the deep formal backgrounds on which todays reasoning paradigms are already founded. Here we propose category theory as a well-explored and very extensive mathematical foundation for modelling distributed knowledge. A particular prospect is to derive conclusions from the structure of those distributed knowledge bases, as it is for example needed when merging ontologies
    Type
    a
  2. Ehrig, M.; Studer, R.: Wissensvernetzung durch Ontologien (2006) 0.00
    0.001564268 = product of:
      0.004692804 = sum of:
        0.004692804 = weight(_text_:a in 5901) [ClassicSimilarity], result of:
          0.004692804 = score(doc=5901,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.090081796 = fieldWeight in 5901, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5901)
      0.33333334 = coord(1/3)
    
    Source
    Semantic Web: Wege zur vernetzten Wissensgesellschaft. Hrsg.: T. Pellegrini, u. A. Blumauer
    Type
    a

Languages

Types