Search (4 results, page 1 of 1)

  • × subject_ss:"Knowledge representation (Information theory)"
  1. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.07
    0.06511536 = product of:
      0.097673036 = sum of:
        0.0056313644 = weight(_text_:a in 987) [ClassicSimilarity], result of:
          0.0056313644 = score(doc=987,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.10809815 = fieldWeight in 987, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=987)
        0.09204167 = sum of:
          0.055313893 = weight(_text_:de in 987) [ClassicSimilarity], result of:
            0.055313893 = score(doc=987,freq=2.0), product of:
              0.19416152 = queryWeight, product of:
                4.297489 = idf(docFreq=1634, maxDocs=44218)
                0.045180224 = queryNorm
              0.28488597 = fieldWeight in 987, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.297489 = idf(docFreq=1634, maxDocs=44218)
                0.046875 = fieldNorm(doc=987)
          0.03672778 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
            0.03672778 = score(doc=987,freq=2.0), product of:
              0.15821345 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045180224 = queryNorm
              0.23214069 = fieldWeight in 987, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=987)
      0.6666667 = coord(2/3)
    
    Abstract
    This book covers the basics of semantic web technologies and indexing languages, and describes their contribution to improve languages as a tool for subject queries and knowledge exploration. The book is relevant to information scientists, knowledge workers and indexers. It provides a suitable combination of theoretical foundations and practical applications.
    Date
    23. 7.2017 13:49:22
    Imprint
    Berlin : De Gruyter Saur
  2. Handbook on ontologies (2004) 0.00
    0.002473325 = product of:
      0.0074199745 = sum of:
        0.0074199745 = weight(_text_:a in 1952) [ClassicSimilarity], result of:
          0.0074199745 = score(doc=1952,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.14243183 = fieldWeight in 1952, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1952)
      0.33333334 = coord(1/3)
    
    Abstract
    An ontology is a description (like a formal specification of a program) of concepts and relationships that can exist for an agent or a community of agents. The concept is important for the purpose of enabling knowledge sharing and reuse. The Handbook on Ontologies provides a comprehensive overview of the current status and future prospectives of the field of ontologies. The handbook demonstrates standards that have been created recently, it surveys methods that have been developed and it shows how to bring both into practice of ontology infrastructures and applications that are the best of their kind.
  3. Philosophy, computing and information science (2014) 0.00
    0.0015326635 = product of:
      0.0045979903 = sum of:
        0.0045979903 = weight(_text_:a in 3407) [ClassicSimilarity], result of:
          0.0045979903 = score(doc=3407,freq=6.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.088261776 = fieldWeight in 3407, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=3407)
      0.33333334 = coord(1/3)
    
    Content
    Introduction: Philosophy's Relevance in Computing and Information Science - Ruth Hagengruber and Uwe V.Riss Part I: Philosophy of Computing and Information 1 The Fourth Revolution in our Self-Understanding - Luciano Floridi -- 2 Information Transfer as a Metaphor - Jakob Krebs -- 3 With Aristotle towards a Differentiated Concept of Information? - Uwe Voigt -- 4 The Influence of Philosophy on the Understanding of Computing and Information - Klaus Fuchs-Kittowski -- Part II: Complexity and System Theory 5 The Emergence of Self-Conscious Systems: From Symbolic AI to Embodied Robotics - Klaus Mainzer -- 6 Artificial Intelligence as a New Metaphysical Project - Aziz F. Zambak Part III: Ontology 7 The Relevance of Philosophical Ontology to Information and Computer Science - Barry Smith -- 8 Ontology, its Origins and its Meaning in Information Science - Jens Kohne -- 9 Smart Questions: Steps towards an Ontology of Questions and Answers - Ludwig Jaskolla and Matthias Rugel Part IV: Knowledge Representation 10 Sophisticated Knowledge Representation and Reasoning Requires Philosophy - Selmer Bringsjord, Micah Clark and Joshua Taylor -- 11 On Frames and Theory-Elements of Structuralism Holger Andreas -- 12 Ontological Complexity and Human Culture David J. Saab and Frederico Fonseca Part V: Action Theory 13 Knowledge and Action between Abstraction and Concretion - Uwe V.Riss -- 14 Action-Directing Construction of Reality in Product Creation Using Social Software: Employing Philosophy to Solve Real-World Problems - Kai Holzweifiig and Jens Krüger -- 15 An Action-Theory-Based Treatment ofTemporal Individuals - Tillmann Pross -- 16 Four Rules for Classifying Social Entities - Ludger Jansen Part VI: Info-Computationalism 17 Info-Computationalism and Philosophical Aspects of Research in Information Sciences - Gordana Dodig-Crnkovic -- 18 Pancomputationalism: Theory or Metaphor ? - Vincent C. Mutter Part VII: Ethics 19 The Importance of the Sources of Professional Obligations - Francis C. Dane
  4. Weller, K.: Knowledge representation in the Social Semantic Web (2010) 0.00
    0.0010949876 = product of:
      0.0032849628 = sum of:
        0.0032849628 = weight(_text_:a in 4515) [ClassicSimilarity], result of:
          0.0032849628 = score(doc=4515,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.06305726 = fieldWeight in 4515, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4515)
      0.33333334 = coord(1/3)
    
    Abstract
    The main purpose of this book is to sum up the vital and highly topical research issue of knowledge representation on the Web and to discuss novel solutions by combining benefits of folksonomies and Web 2.0 approaches with ontologies and semantic technologies. This book contains an overview of knowledge representation approaches in past, present and future, introduction to ontologies, Web indexing and in first case the novel approaches of developing ontologies. This title combines aspects of knowledge representation for both the Semantic Web (ontologies) and the Web 2.0 (folksonomies). Currently there is no monographic book which provides a combined overview over these topics. focus on the topic of using knowledge representation methods for document indexing purposes. For this purpose, considerations from classical librarian interests in knowledge representation (thesauri, classification schemes etc.) are included, which are not part of most other books which have a stronger background in computer science.

Types