Search (201 results, page 2 of 11)

  • × theme_ss:"Automatisches Klassifizieren"
  1. Reiner, U.: Automatische DDC-Klassifizierung bibliografischer Titeldatensätze der Deutschen Nationalbibliografie (2009) 0.01
    0.011227056 = product of:
      0.016840585 = sum of:
        0.0045979903 = weight(_text_:a in 3284) [ClassicSimilarity], result of:
          0.0045979903 = score(doc=3284,freq=6.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.088261776 = fieldWeight in 3284, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=3284)
        0.012242594 = product of:
          0.024485188 = sum of:
            0.024485188 = weight(_text_:22 in 3284) [ClassicSimilarity], result of:
              0.024485188 = score(doc=3284,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.15476047 = fieldWeight in 3284, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3284)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Das Klassifizieren von Objekten (z. B. Fauna, Flora, Texte) ist ein Verfahren, das auf menschlicher Intelligenz basiert. In der Informatik - insbesondere im Gebiet der Künstlichen Intelligenz (KI) - wird u. a. untersucht, inweit Verfahren, die menschliche Intelligenz benötigen, automatisiert werden können. Hierbei hat sich herausgestellt, dass die Lösung von Alltagsproblemen eine größere Herausforderung darstellt, als die Lösung von Spezialproblemen, wie z. B. das Erstellen eines Schachcomputers. So ist "Rybka" der seit Juni 2007 amtierende Computerschach-Weltmeistern. Inwieweit Alltagsprobleme mit Methoden der Künstlichen Intelligenz gelöst werden können, ist eine - für den allgemeinen Fall - noch offene Frage. Beim Lösen von Alltagsproblemen spielt die Verarbeitung der natürlichen Sprache, wie z. B. das Verstehen, eine wesentliche Rolle. Den "gesunden Menschenverstand" als Maschine (in der Cyc-Wissensbasis in Form von Fakten und Regeln) zu realisieren, ist Lenat's Ziel seit 1984. Bezüglich des KI-Paradeprojektes "Cyc" gibt es CycOptimisten und Cyc-Pessimisten. Das Verstehen der natürlichen Sprache (z. B. Werktitel, Zusammenfassung, Vorwort, Inhalt) ist auch beim intellektuellen Klassifizieren von bibliografischen Titeldatensätzen oder Netzpublikationen notwendig, um diese Textobjekte korrekt klassifizieren zu können. Seit dem Jahr 2007 werden von der Deutschen Nationalbibliothek nahezu alle Veröffentlichungen mit der Dewey Dezimalklassifikation (DDC) intellektuell klassifiziert.
    Die Menge der zu klassifizierenden Veröffentlichungen steigt spätestens seit der Existenz des World Wide Web schneller an, als sie intellektuell sachlich erschlossen werden kann. Daher werden Verfahren gesucht, um die Klassifizierung von Textobjekten zu automatisieren oder die intellektuelle Klassifizierung zumindest zu unterstützen. Seit 1968 gibt es Verfahren zur automatischen Dokumentenklassifizierung (Information Retrieval, kurz: IR) und seit 1992 zur automatischen Textklassifizierung (ATC: Automated Text Categorization). Seit immer mehr digitale Objekte im World Wide Web zur Verfügung stehen, haben Arbeiten zur automatischen Textklassifizierung seit ca. 1998 verstärkt zugenommen. Dazu gehören seit 1996 auch Arbeiten zur automatischen DDC-Klassifizierung bzw. RVK-Klassifizierung von bibliografischen Titeldatensätzen und Volltextdokumenten. Bei den Entwicklungen handelt es sich unseres Wissens bislang um experimentelle und keine im ständigen Betrieb befindlichen Systeme. Auch das VZG-Projekt Colibri/DDC ist seit 2006 u. a. mit der automatischen DDC-Klassifizierung befasst. Die diesbezüglichen Untersuchungen und Entwicklungen dienen zur Beantwortung der Forschungsfrage: "Ist es möglich, eine inhaltlich stimmige DDC-Titelklassifikation aller GVK-PLUS-Titeldatensätze automatisch zu erzielen?"
    Date
    22. 1.2010 14:41:24
    Type
    a
  2. Reiner, U.: Automatische DDC-Klassifizierung von bibliografischen Titeldatensätzen (2009) 0.01
    0.010202162 = product of:
      0.030606484 = sum of:
        0.030606484 = product of:
          0.061212968 = sum of:
            0.061212968 = weight(_text_:22 in 611) [ClassicSimilarity], result of:
              0.061212968 = score(doc=611,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.38690117 = fieldWeight in 611, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=611)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 8.2009 12:54:24
  3. Automatic classification research at OCLC (2002) 0.01
    0.0071415133 = product of:
      0.02142454 = sum of:
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 1563) [ClassicSimilarity], result of:
              0.04284908 = score(doc=1563,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 1563, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1563)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    5. 5.2003 9:22:09
  4. Sparck Jones, K.: Automatic classification (1976) 0.01
    0.006130654 = product of:
      0.018391961 = sum of:
        0.018391961 = weight(_text_:a in 2908) [ClassicSimilarity], result of:
          0.018391961 = score(doc=2908,freq=6.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.3530471 = fieldWeight in 2908, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.125 = fieldNorm(doc=2908)
      0.33333334 = coord(1/3)
    
    Source
    Classification in the 1970s: a second look. Rev. ed. Ed.: A. Maltby
    Type
    a
  5. Ardö, A.; Koch, T.: Automatic classification applied to full-text Internet documents in a robot-generated subject index (1999) 0.00
    0.0045979903 = product of:
      0.01379397 = sum of:
        0.01379397 = weight(_text_:a in 382) [ClassicSimilarity], result of:
          0.01379397 = score(doc=382,freq=6.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.26478532 = fieldWeight in 382, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=382)
      0.33333334 = coord(1/3)
    
    Type
    a
  6. Chung, Y.-M.; Noh, Y.-H.: Developing a specialized directory system by automatically classifying Web documents (2003) 0.00
    0.0044022407 = product of:
      0.013206721 = sum of:
        0.013206721 = weight(_text_:a in 1566) [ClassicSimilarity], result of:
          0.013206721 = score(doc=1566,freq=22.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.25351265 = fieldWeight in 1566, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1566)
      0.33333334 = coord(1/3)
    
    Abstract
    This study developed a specialized directory system using an automatic classification technique. Economics was selected as the subject field for the classification experiments with Web documents. The classification scheme of the directory follows the DDC, and subject terms representing each class number or subject category were selected from the DDC table to construct a representative term dictionary. In collecting and classifying the Web documents, various strategies were tested in order to find the optimal thresholds. In the classification experiments, Web documents in economics were classified into a total of 757 hierarchical subject categories built from the DDC scheme. The first and second experiments using the representative term dictionary resulted in relatively high precision ratios of 77 and 60%, respectively. The third experiment employing a machine learning-based k-nearest neighbours (kNN) classifier in a closed experimental setting achieved a precision ratio of 96%. This implies that it is possible to enhance the classification performance by applying a hybrid method combining a dictionary-based technique and a kNN classifier
    Type
    a
  7. Schiminovich, S.: Automatic classification and retrieval of documents by means of a bibliographic pattern discovery algorithm (1971) 0.00
    0.0043799505 = product of:
      0.013139851 = sum of:
        0.013139851 = weight(_text_:a in 4846) [ClassicSimilarity], result of:
          0.013139851 = score(doc=4846,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.25222903 = fieldWeight in 4846, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.109375 = fieldNorm(doc=4846)
      0.33333334 = coord(1/3)
    
    Type
    a
  8. Fong, A.C.M.: Mining a Web citation database for document clustering (2002) 0.00
    0.0043799505 = product of:
      0.013139851 = sum of:
        0.013139851 = weight(_text_:a in 3940) [ClassicSimilarity], result of:
          0.013139851 = score(doc=3940,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.25222903 = fieldWeight in 3940, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.109375 = fieldNorm(doc=3940)
      0.33333334 = coord(1/3)
    
    Type
    a
  9. Dang, E.K.F.; Luk, R.W.P.; Ho, K.S.; Chan, S.C.F.; Lee, D.L.: ¬A new measure of clustering effectiveness : algorithms and experimental studies (2008) 0.00
    0.0043799505 = product of:
      0.013139851 = sum of:
        0.013139851 = weight(_text_:a in 1367) [ClassicSimilarity], result of:
          0.013139851 = score(doc=1367,freq=16.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.25222903 = fieldWeight in 1367, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1367)
      0.33333334 = coord(1/3)
    
    Abstract
    We propose a new optimal clustering effectiveness measure, called CS1, based on a combination of clusters rather than selecting a single optimal cluster as in the traditional MK1 measure. For hierarchical clustering, we present an algorithm to compute CS1, defined by seeking the optimal combinations of disjoint clusters obtained by cutting the hierarchical structure at a certain similarity level. By reformulating the optimization to a 0-1 linear fractional programming problem, we demonstrate that an exact solution can be obtained by a linear time algorithm. We further discuss how our approach can be generalized to more general problems involving overlapping clusters, and we show how optimal estimates can be obtained by greedy algorithms.
    Type
    a
  10. Godby, C. J.; Stuler, J.: ¬The Library of Congress Classification as a knowledge base for automatic subject categorization (2001) 0.00
    0.0043350267 = product of:
      0.01300508 = sum of:
        0.01300508 = weight(_text_:a in 1567) [ClassicSimilarity], result of:
          0.01300508 = score(doc=1567,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.24964198 = fieldWeight in 1567, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=1567)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper describes a set of experiments in adapting a subset of the Library of Congress Classification for use as a database for automatic classification. A high degree of concept integrity was obtained when subject headings were mapped from OCLC's WorldCat database and filtered using the log-likelihood statistic
    Footnote
    Paper, IFLA Preconference "Subject Retrieval in a Networked Environment", Dublin, OH, August 2001.
  11. Lindholm, J.; Schönthal, T.; Jansson , K.: Experiences of harvesting Web resources in engineering using automatic classification (2003) 0.00
    0.0043350267 = product of:
      0.01300508 = sum of:
        0.01300508 = weight(_text_:a in 4088) [ClassicSimilarity], result of:
          0.01300508 = score(doc=4088,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.24964198 = fieldWeight in 4088, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=4088)
      0.33333334 = coord(1/3)
    
    Abstract
    Authors describe the background and the work involved in setting up Engine-e, a Web index that uses automatic classification as a mean for the selection of resources in Engineering. Considerations in offering a robot-generated Web index as a successor to a manually indexed quality-controlled subject gateway are also discussed
    Type
    a
  12. May, A.D.: Automatic classification of e-mail messages by message type (1997) 0.00
    0.0040970687 = product of:
      0.012291206 = sum of:
        0.012291206 = weight(_text_:a in 6493) [ClassicSimilarity], result of:
          0.012291206 = score(doc=6493,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.23593865 = fieldWeight in 6493, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6493)
      0.33333334 = coord(1/3)
    
    Abstract
    This article describes a system that automatically classifies e-mail messages in the HUMANIST electronic discussion group into one of 4 classes: questions, responses, announcement or administartive. A total of 1.372 messages were analyzed. The automatic classification of a message was based on string matching between a message text and predefined string sets for each of the massage types. The system's automated ability to accurately classify a message was compared against manually assigned codes. The Cohen's Kappa of .55 suggested that there was a statistical agreement between the automatic and manually assigned codes
    Type
    a
  13. Godby, C.J.; Stuler, J.: ¬The Library of Congress Classification as a knowledge base for automatic subject categorization : subject access issues (2003) 0.00
    0.0040970687 = product of:
      0.012291206 = sum of:
        0.012291206 = weight(_text_:a in 3962) [ClassicSimilarity], result of:
          0.012291206 = score(doc=3962,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.23593865 = fieldWeight in 3962, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3962)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper describes a set of experiments in adapting a subset of the Library of Congress Classification for use as a database for automatic classification. A high degree of concept integrity was obtained when subject headings were mapped from OCLC's WorldCat database and filtered using the log-likelihood statistic.
    Source
    Subject retrieval in a networked environment: Proceedings of the IFLA Satellite Meeting held in Dublin, OH, 14-16 August 2001 and sponsored by the IFLA Classification and Indexing Section, the IFLA Information Technology Section and OCLC. Ed.: I.C. McIlwaine
    Type
    a
  14. Dolin, R.; Agrawal, D.; El Abbadi, A.; Pearlman, J.: Using automated classification for summarizing and selecting heterogeneous information sources (1998) 0.00
    0.0039819763 = product of:
      0.011945928 = sum of:
        0.011945928 = weight(_text_:a in 316) [ClassicSimilarity], result of:
          0.011945928 = score(doc=316,freq=18.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22931081 = fieldWeight in 316, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=316)
      0.33333334 = coord(1/3)
    
    Abstract
    Information retrieval over the Internet increasingly requires the filtering of thousands of heterogeneous information sources. Important sources of information include not only traditional databases with structured data and queries, but also increasing numbers of non-traditional, semi- or unstructured collections such as Web sites, FTP archives, etc. As the number and variability of sources increases, new ways of automatically summarizing, discovering, and selecting collections relevant to a user's query are needed. One such method involves the use of classification schemes, such as the Library of Congress Classification (LCC) [10], within which a collection may be represented based on its content, irrespective of the structure of the actual data or documents. For such a system to be useful in a large-scale distributed environment, it must be easy to use for both collection managers and users. As a result, it must be possible to classify documents automatically within a classification scheme. Furthermore, there must be a straightforward and intuitive interface with which the user may use the scheme to assist in information retrieval (IR).
    Type
    a
  15. Sebastiani, F.: ¬A tutorial an automated text categorisation (1999) 0.00
    0.0039819763 = product of:
      0.011945928 = sum of:
        0.011945928 = weight(_text_:a in 3390) [ClassicSimilarity], result of:
          0.011945928 = score(doc=3390,freq=18.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22931081 = fieldWeight in 3390, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3390)
      0.33333334 = coord(1/3)
    
    Abstract
    The automated categorisation (or classification) of texts into topical categories has a long history, dating back at least to 1960. Until the late '80s, the dominant approach to the problem involved knowledge-engineering automatic categorisers, i.e. manually building a set of rules encoding expert knowledge an how to classify documents. In the '90s, with the booming production and availability of on-line documents, automated text categorisation has witnessed an increased and renewed interest. A newer paradigm based an machine learning has superseded the previous approach. Within this paradigm, a general inductive process automatically builds a classifier by "learning", from a set of previously classified documents, the characteristics of one or more categories; the advantages are a very good effectiveness, a considerable savings in terms of expert manpower, and domain independence. In this tutorial we look at the main approaches that have been taken towards automatic text categorisation within the general machine learning paradigm. Issues of document indexing, classifier construction, and classifier evaluation, will be touched upon.
  16. Yoon, Y.; Lee, G.G.: Efficient implementation of associative classifiers for document classification (2007) 0.00
    0.0039819763 = product of:
      0.011945928 = sum of:
        0.011945928 = weight(_text_:a in 909) [ClassicSimilarity], result of:
          0.011945928 = score(doc=909,freq=18.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22931081 = fieldWeight in 909, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=909)
      0.33333334 = coord(1/3)
    
    Abstract
    In practical text classification tasks, the ability to interpret the classification result is as important as the ability to classify exactly. Associative classifiers have many favorable characteristics such as rapid training, good classification accuracy, and excellent interpretation. However, associative classifiers also have some obstacles to overcome when they are applied in the area of text classification. The target text collection generally has a very high dimension, thus the training process might take a very long time. We propose a feature selection based on the mutual information between the word and class variables to reduce the space dimension of the associative classifiers. In addition, the training process of the associative classifier produces a huge amount of classification rules, which makes the prediction with a new document ineffective. We resolve this by introducing a new efficient method for storing and pruning classification rules. This method can also be used when predicting a test document. Experimental results using the 20-newsgroups dataset show many benefits of the associative classification in both training and predicting when applied to a real world problem.
    Type
    a
  17. Malo, P.; Sinha, A.; Wallenius, J.; Korhonen, P.: Concept-based document classification using Wikipedia and value function (2011) 0.00
    0.0039819763 = product of:
      0.011945928 = sum of:
        0.011945928 = weight(_text_:a in 4948) [ClassicSimilarity], result of:
          0.011945928 = score(doc=4948,freq=18.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22931081 = fieldWeight in 4948, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4948)
      0.33333334 = coord(1/3)
    
    Abstract
    In this article, we propose a new concept-based method for document classification. The conceptual knowledge associated with the words is drawn from Wikipedia. The purpose is to utilize the abundant semantic relatedness information available in Wikipedia in an efficient value function-based query learning algorithm. The procedure learns the value function by solving a simple linear programming problem formulated using the training documents. The learning involves a step-wise iterative process that helps in generating a value function with an appropriate set of concepts (dimensions) chosen from a collection of concepts. Once the value function is formulated, it is utilized to make a decision between relevance and irrelevance. The value assigned to a particular document from the value function can be further used to rank the documents according to their relevance. Reuters newswire documents have been used to evaluate the efficacy of the procedure. An extensive comparison with other frameworks has been performed. The results are promising.
    Type
    a
  18. Lim, C.S.; Lee, K.J.; Kim, G.C.: Multiple sets of features for automatic genre classification of web documents (2005) 0.00
    0.0038316585 = product of:
      0.011494976 = sum of:
        0.011494976 = weight(_text_:a in 1048) [ClassicSimilarity], result of:
          0.011494976 = score(doc=1048,freq=24.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22065444 = fieldWeight in 1048, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1048)
      0.33333334 = coord(1/3)
    
    Abstract
    With the increase of information on the Web, it is difficult to find desired information quickly out of the documents retrieved by a search engine. One way to solve this problem is to classify web documents according to various criteria. Most document classification has been focused on a subject or a topic of a document. A genre or a style is another view of a document different from a subject or a topic. The genre is also a criterion to classify documents. In this paper, we suggest multiple sets of features to classify genres of web documents. The basic set of features, which have been proposed in the previous studies, is acquired from the textual properties of documents, such as the number of sentences, the number of a certain word, etc. However, web documents are different from textual documents in that they contain URL and HTML tags within the pages. We introduce new sets of features specific to web documents, which are extracted from URL and HTML tags. The present work is an attempt to evaluate the performance of the proposed sets of features, and to discuss their characteristics. Finally, we conclude which is an appropriate set of features in automatic genre classification of web documents.
    Type
    a
  19. Meder, N.: Artificial intelligence as a tool of classification, or: the network of language games as cognitive paradigm (1985) 0.00
    0.003793148 = product of:
      0.011379444 = sum of:
        0.011379444 = weight(_text_:a in 7694) [ClassicSimilarity], result of:
          0.011379444 = score(doc=7694,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.21843673 = fieldWeight in 7694, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7694)
      0.33333334 = coord(1/3)
    
    Abstract
    It is shown that the cognitive paradigm may be an orientation mark for automatic classification. On the basis of research in Artificial Intelligence, the cognitive paradigm - as opposed to the behavioristic paradigm - was developed as a multiplicity of competitive world-views. This is the thesis of DeMey in his book "The cognitive paradigm". Multiplicity in a loosely-coupled network of cognitive knots is also the principle of dynamic restlessness. In competititon with cognitive views, a classification system that follows various models may learn by concrete information retrieval. During his actions the user builds implicitly a new classification order
    Type
    a
  20. Rose, J.R.; Gasteiger, J.: HORACE: an automatic system for the hierarchical classification of chemical reactions (1994) 0.00
    0.003793148 = product of:
      0.011379444 = sum of:
        0.011379444 = weight(_text_:a in 7696) [ClassicSimilarity], result of:
          0.011379444 = score(doc=7696,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.21843673 = fieldWeight in 7696, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7696)
      0.33333334 = coord(1/3)
    
    Abstract
    Describes an automatic classification system for classifying chemical reactions. A detailed study of the classification of chemical reactions, based on topological and physicochemical features, is followed by an analysis of the hierarchical classification produced by the HORACE algorithm (Hierarchical Organization of Reactions through Attribute and Condition Eduction), which combines both approaches in a synergistic manner. The searching and updating of reaction hierarchies is demonstrated with the hierarchies produced for 2 data sets by the HORACE algorithm. Shows that reaction hierarchies provide an efficient access to reaction information and indicate the main reaction types for a given reaction scheme, define the scope of a reaction type, enable searchers to find unusual reactions, and can help in locating the reactions most relevant for a given problem
    Type
    a

Years

Languages

  • e 168
  • d 30
  • a 1
  • chi 1
  • More… Less…

Types

  • a 178
  • el 27
  • r 2
  • m 1
  • s 1
  • x 1
  • More… Less…