Search (87 results, page 1 of 5)

  • × theme_ss:"Semantische Interoperabilität"
  • × type_ss:"el"
  1. Tonkin, E.; Baptista, A.A.; Hooland, S. van; Resmini, A.; Mendéz, E.; Neville, L.: Kinds of Tags : a collaborative research study on tag usage and structure (2007) 0.03
    0.034801044 = product of:
      0.05220156 = sum of:
        0.0065699257 = weight(_text_:a in 531) [ClassicSimilarity], result of:
          0.0065699257 = score(doc=531,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.12611452 = fieldWeight in 531, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=531)
        0.045631636 = product of:
          0.09126327 = sum of:
            0.09126327 = weight(_text_:de in 531) [ClassicSimilarity], result of:
              0.09126327 = score(doc=531,freq=4.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.47003788 = fieldWeight in 531, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=531)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    KoT (Kinds of Tags) is an ongoing joint collaborative research effort with many participants worldwide, including the University of Minho, UKOLN, the University of Bologna, the Université Libre de Bruxelles and La Universidad Carlos III de Madrid. It is focused on the analysis of tags that are in common use in the practice of social tagging, with the aim of discovering how easily tags can be 'normalised' for interoperability with standard metadata environments such as the DC Metadata Terms.
  2. Haslhofer, B.: Uniform SPARQL access to interlinked (digital library) sources (2007) 0.02
    0.022454113 = product of:
      0.03368117 = sum of:
        0.009195981 = weight(_text_:a in 541) [ClassicSimilarity], result of:
          0.009195981 = score(doc=541,freq=6.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.17652355 = fieldWeight in 541, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=541)
        0.024485188 = product of:
          0.048970375 = sum of:
            0.048970375 = weight(_text_:22 in 541) [ClassicSimilarity], result of:
              0.048970375 = score(doc=541,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.30952093 = fieldWeight in 541, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=541)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In this presentation, we therefore focus on a solution for providing uniform access to Digital Libraries and other online services. In order to enable uniform query access to heterogeneous sources, we must provide metadata interoperability in a way that a query language - in this case SPARQL - can cope with the incompatibility of the metadata in various sources without changing their already existing information models.
    Date
    26.12.2011 13:22:46
  3. Isaac, A.; Raemy, J.A.; Meijers, E.; Valk, S. De; Freire, N.: Metadata aggregation via linked data : results of the Europeana Common Culture project (2020) 0.02
    0.021092616 = product of:
      0.031638924 = sum of:
        0.0039819763 = weight(_text_:a in 39) [ClassicSimilarity], result of:
          0.0039819763 = score(doc=39,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.07643694 = fieldWeight in 39, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=39)
        0.027656946 = product of:
          0.055313893 = sum of:
            0.055313893 = weight(_text_:de in 39) [ClassicSimilarity], result of:
              0.055313893 = score(doc=39,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.28488597 = fieldWeight in 39, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.046875 = fieldNorm(doc=39)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
  4. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2012) 0.02
    0.021067886 = product of:
      0.031601828 = sum of:
        0.0056313644 = weight(_text_:a in 1967) [ClassicSimilarity], result of:
          0.0056313644 = score(doc=1967,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.10809815 = fieldWeight in 1967, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1967)
        0.025970465 = product of:
          0.05194093 = sum of:
            0.05194093 = weight(_text_:22 in 1967) [ClassicSimilarity], result of:
              0.05194093 = score(doc=1967,freq=4.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.32829654 = fieldWeight in 1967, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1967)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The paper discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and /or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the DDC (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
    Type
    a
  5. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.02
    0.020477211 = product of:
      0.030715816 = sum of:
        0.009291277 = weight(_text_:a in 759) [ClassicSimilarity], result of:
          0.009291277 = score(doc=759,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.17835285 = fieldWeight in 759, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=759)
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.04284908 = score(doc=759,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    XML will have a profound impact on the way data is exchanged on the Internet. An important feature of this language is the separation of content from presentation, which makes it easier to select and/or reformat the data. However, due to the likelihood of numerous industry and domain specific DTDs, those who wish to integrate information will still be faced with the problem of semantic interoperability. In this paper we discuss why this problem is not solved by XML, and then discuss why the Resource Description Framework is only a partial solution. We then present the SHOE language, which we feel has many of the features necessary to enable a semantic web, and describe an existing set of tools that make it easy to use the language.
    Date
    11. 5.2013 19:22:18
    Type
    a
  6. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.02
    0.02043378 = product of:
      0.030650668 = sum of:
        0.0076032113 = weight(_text_:a in 4232) [ClassicSimilarity], result of:
          0.0076032113 = score(doc=4232,freq=42.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.14594918 = fieldWeight in 4232, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
        0.023047457 = product of:
          0.046094913 = sum of:
            0.046094913 = weight(_text_:de in 4232) [ClassicSimilarity], result of:
              0.046094913 = score(doc=4232,freq=8.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.23740499 = fieldWeight in 4232, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=4232)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    After the launch of the World Wide Web, it became clear that searching documentson the Web would not be trivial. Well-known engines to search the web, like Google, focus on search in web documents using keywords. The documents are structured and indexed to ensure keywords match documents as accurately as possible. However, searching by keywords does not always suice. It is oen the case that users do not know exactly how to formulate the search query or which keywords guarantee retrieving the most relevant documents. Besides that, it occurs that users rather want to browse information than looking up something specific. It turned out that there is need for systems that enable more interactivity and facilitate the gradual refinement of search queries to explore the Web. Users expect more from the Web because the short keyword-based queries they pose during search, do not suffice for all cases. On top of that, the Web is changing structurally. The Web comprises, apart from a collection of documents, more and more linked data, pieces of information structured so they can be processed by machines. The consequently applied semantics allow users to exactly indicate machines their search intentions. This is made possible by describing data following controlled vocabularies, concept lists composed by experts, published uniquely identifiable on the Web. Even so, it is still not trivial to explore data on the Web. There is a large variety of vocabularies and various data sources use different terms to identify the same concepts.
    This PhD-thesis describes how to effectively explore linked data on the Web. The main focus is on scenarios where users want to discover relationships between resources rather than finding out more about something specific. Searching for a specific document or piece of information fits in the theoretical framework of information retrieval and is associated with exploratory search. Exploratory search goes beyond 'looking up something' when users are seeking more detailed understanding, further investigation or navigation of the initial search results. The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. Queries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research. Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data.
    The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. eries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research.
    Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data. There is a difference in the way users interact with resources, visually or textually, and how resources are represented for machines to be processed by algorithms. This difference complicates bridging the users' intents and machine executable queries. It is important to implement this 'translation' mechanism to impact the search as favorable as possible in terms of performance, complexity and accuracy. To do this, we explain a second technique, that supports such a bridging component. Our second technique is developed around three features that support the search process: looking up, relating and ranking resources. The main goal is to ensure that resources in the results are as precise and relevant as possible. During the evaluation of this technique, we did not only look at the precision of the search results but also investigated how the effectiveness of the search evolved while the user executed certain actions sequentially.
    When we speak about finding relationships between resources, it is necessary to dive deeper in the structure. The graph structure of linked data where the semantics give meaning to the relationships between resources enable the execution of pathfinding algorithms. The assigned weights and heuristics are base components of such algorithms and ultimately define (the order) which resources are included in a path. These paths explain indirect connections between resources. Our third technique proposes an algorithm that optimizes the choice of resources in terms of serendipity. Some optimizations guard the consistence of candidate-paths where the coherence of consecutive connections is maximized to avoid trivial and too arbitrary paths. The implementation uses the A* algorithm, the de-facto reference when it comes to heuristically optimized minimal cost paths. The effectiveness of paths was measured based on common automatic metrics and surveys where the users could indicate their preference for paths, generated each time in a different way. Finally, all our techniques are applied to a use case about publications in digital libraries where they are aligned with information about scientific conferences and researchers. The application to this use case is a practical example because the different aspects of exploratory search come together. In fact, the techniques also evolved from the experiences when implementing the use case. Practical details about the semantic model are explained and the implementation of the search system is clarified module by module. The evaluation positions the result, a prototype of a tool to explore scientific publications, researchers and conferences next to some important alternatives.
    Content
    Proefschrift ingediend tot het behalen van de graad van Doctor in de ingenieurswetenschappen: computerwetenschappen. Vgl. unter: https://www.researchgate.net/publication/319667837_Exploring_semantic_relationships_in_the_web_of_data.
  7. Bastos Vieira, S.; DeBrito, M.; Mustafa El Hadi, W.; Zumer, M.: Developing imaged KOS with the FRSAD Model : a conceptual methodology (2016) 0.02
    0.016974341 = product of:
      0.02546151 = sum of:
        0.007023546 = weight(_text_:a in 3109) [ClassicSimilarity], result of:
          0.007023546 = score(doc=3109,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.13482209 = fieldWeight in 3109, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=3109)
        0.018437965 = product of:
          0.03687593 = sum of:
            0.03687593 = weight(_text_:de in 3109) [ClassicSimilarity], result of:
              0.03687593 = score(doc=3109,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.18992399 = fieldWeight in 3109, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3109)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This proposal presents the methodology of indexing with images suggested by De Brito and Caribé (2015). The imagetic model is used as a compatible mechanism with FRSAD for a global information share and use of subject data, both within the library sector and beyond. The conceptual model of imagetic indexing shows how images are related to topics and 'key-images' are interpreted as nomens to implement the FRSAD model. Indexing with images consists of using images instead of key-words or descriptors, to represent and organize information. Implementing the imaged navigation in OPACs denotes multiple advantages derived from this rethinking the OPAC anew, since we are looking forward to sharing concepts within the subject authority data. Images, carrying linguistic objects, permeate inter-social and cultural concepts. In practice it includes translated metadata, symmetrical multilingual thesaurus, or any traditional indexing tools. iOPAC embodies efforts focused on conceptual levels as expected from librarians. Imaged interfaces are more intuitive since users do not need specific training for information retrieval, offering easier comprehension of indexing codes, larger conceptual portability of descriptors (as images), and a better interoperability between discourse codes and indexing competences affecting positively social and cultural interoperability. The imagetic methodology deploys R&D fields for more suitable interfaces taking into consideration users with specific needs such as deafness and illiteracy. This methodology arouse questions about the paradigms of the primacy of orality in information systems and pave the way to a legitimacy of multiple perspectives in document indexing by suggesting a more universal communication system based on images. Interdisciplinarity in neurosciences, linguistics and information sciences would be desirable competencies for further investigations about he nature of cognitive processes in information organization and classification while developing assistive KOS for individuals with communication problems, such autism and deafness.
    Type
    a
  8. Si, L.E.; O'Brien, A.; Probets, S.: Integration of distributed terminology resources to facilitate subject cross-browsing for library portal systems (2009) 0.02
    0.016838789 = product of:
      0.025258183 = sum of:
        0.0099549405 = weight(_text_:a in 3628) [ClassicSimilarity], result of:
          0.0099549405 = score(doc=3628,freq=18.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.19109234 = fieldWeight in 3628, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3628)
        0.015303242 = product of:
          0.030606484 = sum of:
            0.030606484 = weight(_text_:22 in 3628) [ClassicSimilarity], result of:
              0.030606484 = score(doc=3628,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.19345059 = fieldWeight in 3628, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3628)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose: To develop a prototype middleware framework between different terminology resources in order to provide a subject cross-browsing service for library portal systems. Design/methodology/approach: Nine terminology experts were interviewed to collect appropriate knowledge to support the development of a theoretical framework for the research. Based on this, a simplified software-based prototype system was constructed incorporating the knowledge acquired. The prototype involved mappings between the computer science schedule of the Dewey Decimal Classification (which acted as a spine) and two controlled vocabularies UKAT and ACM Computing Classification. Subsequently, six further experts in the field were invited to evaluate the prototype system and provide feedback to improve the framework. Findings: The major findings showed that given the large variety of terminology resources distributed on the web, the proposed middleware service is essential to integrate technically and semantically the different terminology resources in order to facilitate subject cross-browsing. A set of recommendations are also made outlining the important approaches and features that support such a cross browsing middleware service.
    Content
    This paper is a pre-print version presented at the ISKO UK 2009 conference, 22-23 June, prior to peer review and editing. For published proceedings see special issue of Aslib Proceedings journal.
  9. Panzer, M.: Relationships, spaces, and the two faces of Dewey (2008) 0.02
    0.015301551 = product of:
      0.022952326 = sum of:
        0.009123853 = weight(_text_:a in 2127) [ClassicSimilarity], result of:
          0.009123853 = score(doc=2127,freq=42.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.17513901 = fieldWeight in 2127, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2127)
        0.013828473 = product of:
          0.027656946 = sum of:
            0.027656946 = weight(_text_:de in 2127) [ClassicSimilarity], result of:
              0.027656946 = score(doc=2127,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.14244299 = fieldWeight in 2127, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=2127)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    "When dealing with a large-scale and widely-used knowledge organization system like the Dewey Decimal Classification, we often tend to focus solely on the organization aspect, which is closely intertwined with editorial work. This is perfectly understandable, since developing and updating the DDC, keeping up with current scientific developments, spotting new trends in both scholarly communication and popular publishing, and figuring out how to fit those patterns into the structure of the scheme are as intriguing as they are challenging. From the organization perspective, the intended user of the scheme is mainly the classifier. Dewey acts very much as a number-building engine, providing richly documented concepts to help with classification decisions. Since the Middle Ages, quasi-religious battles have been fought over the "valid" arrangement of places according to specific views of the world, as parodied by Jorge Luis Borges and others. Organizing knowledge has always been primarily an ontological activity; it is about putting the world into the classification. However, there is another side to this coin--the discovery side. While the hierarchical organization of the DDC establishes a default set of places and neighborhoods that is also visible in the physical manifestation of library shelves, this is just one set of relationships in the DDC. A KOS (Knowledge Organization System) becomes powerful by expressing those other relationships in a manner that not only collocates items in a physical place but in a knowledge space, and exposes those other relationships in ways beneficial and congenial to the unique perspective of an information seeker.
    What are those "other" relationships that Dewey possesses and that seem so important to surface? Firstly, there is the relationship of concepts to resources. Dewey has been used for a long time, and over 200,000 numbers are assigned to information resources each year and added to WorldCat by the Library of Congress and the German National Library alone. Secondly, we have relationships between concepts in the scheme itself. Dewey provides a rich set of non-hierarchical relations, indicating other relevant and related subjects across disciplinary boundaries. Thirdly, perhaps most importantly, there is the relationship between the same concepts across different languages. Dewey has been translated extensively, and current versions are available in French, German, Hebrew, Italian, Spanish, and Vietnamese. Briefer representations of the top-three levels (the DDC Summaries) are available in several languages in the DeweyBrowser. This multilingual nature of the scheme allows searchers to access a broader range of resources or to switch the language of--and thus localize--subject metadata seamlessly. MelvilClass, a Dewey front-end developed by the German National Library for the German translation, could be used as a common interface to the DDC in any language, as it is built upon the standard DDC data format. It is not hard to give an example of the basic terminology of a class pulled together in a multilingual way: <class/794.8> a skos:Concept ; skos:notation "794.8"^^ddc:notation ; skos:prefLabel "Computer games"@en ; skos:prefLabel "Computerspiele"@de ; skos:prefLabel "Jeux sur ordinateur"@fr ; skos:prefLabel "Juegos por computador"@es .
    Expressed in such manner, the Dewey number provides a language-independent representation of a Dewey concept, accompanied by language-dependent assertions about the concept. This information, identified by a URI, can be easily consumed by semantic web agents and used in various metadata scenarios. Fourthly, as we have seen, it is important to play well with others, i.e., establishing and maintaining relationships to other KOS and making the scheme available in different formats. As noted in the Dewey blog post "Tags and Dewey," since no single scheme is ever going to be the be-all, end-all solution for knowledge discovery, DDC concepts have been extensively mapped to other vocabularies and taxonomies, sometimes bridging them and acting as a backbone, sometimes using them as additional access vocabulary to be able to do more work "behind the scenes." To enable other applications and schemes to make use of those relationships, the full Dewey database is available in XML format; RDF-based formats and a web service are forthcoming. Pulling those relationships together under a common surface will be the next challenge going forward. In the semantic web community the concept of Linked Data (http://en.wikipedia.org/wiki/Linked_Data) currently receives some attention, with its emphasis on exposing and connecting data using technologies like URIs, HTTP and RDF to improve information discovery on the web. With its focus on relationships and discovery, it seems that Dewey will be well prepared to become part of this big linked data set. Now it is about putting the classification back into the world!"
  10. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.01
    0.014897244 = product of:
      0.022345865 = sum of:
        0.0039819763 = weight(_text_:a in 4820) [ClassicSimilarity], result of:
          0.0039819763 = score(doc=4820,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.07643694 = fieldWeight in 4820, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4820)
        0.01836389 = product of:
          0.03672778 = sum of:
            0.03672778 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
              0.03672778 = score(doc=4820,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.23214069 = fieldWeight in 4820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4820)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    3.12.2016 18:39:22
    Type
    a
  11. Hafner, R.; Schelling, B.: Automatisierung der Sacherschließung mit Semantic Web Technologie (2015) 0.01
    0.014283027 = product of:
      0.04284908 = sum of:
        0.04284908 = product of:
          0.08569816 = sum of:
            0.08569816 = weight(_text_:22 in 8365) [ClassicSimilarity], result of:
              0.08569816 = score(doc=8365,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.5416616 = fieldWeight in 8365, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=8365)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 6.2015 16:08:38
  12. Haffner, A.: Internationalisierung der GND durch das Semantic Web (2012) 0.01
    0.012304026 = product of:
      0.018456038 = sum of:
        0.0023228193 = weight(_text_:a in 318) [ClassicSimilarity], result of:
          0.0023228193 = score(doc=318,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.044588212 = fieldWeight in 318, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.02734375 = fieldNorm(doc=318)
        0.016133219 = product of:
          0.032266438 = sum of:
            0.032266438 = weight(_text_:de in 318) [ClassicSimilarity], result of:
              0.032266438 = score(doc=318,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.16618349 = fieldWeight in 318, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=318)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Source
    http://www.kim-forum.org/Subsites/kim/SharedDocs/Downloads/DE/Berichte/internationalisierungDerGndDurchDasSemanticWeb.html
  13. Dini, L.: CACAO : multilingual access to bibliographic records (2007) 0.01
    0.012242593 = product of:
      0.03672778 = sum of:
        0.03672778 = product of:
          0.07345556 = sum of:
            0.07345556 = weight(_text_:22 in 126) [ClassicSimilarity], result of:
              0.07345556 = score(doc=126,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.46428138 = fieldWeight in 126, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=126)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    Vortrag anlässlich des Workshops: "Extending the multilingual capacity of The European Library in the EDL project Stockholm, Swedish National Library, 22-23 November 2007".
  14. Landry, P.: MACS: multilingual access to subject and link management : Extending the Multilingual Capacity of TEL in the EDL Project (2007) 0.01
    0.010202162 = product of:
      0.030606484 = sum of:
        0.030606484 = product of:
          0.061212968 = sum of:
            0.061212968 = weight(_text_:22 in 1287) [ClassicSimilarity], result of:
              0.061212968 = score(doc=1287,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.38690117 = fieldWeight in 1287, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1287)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    Vortrag anlässlich des Workshops: "Extending the multilingual capacity of The European Library in the EDL project Stockholm, Swedish National Library, 22-23 November 2007".
  15. Faro, S.; Francesconi, E.; Marinai, E.; Sandrucci, V.: Report on execution and results of the interoperability tests (2008) 0.01
    0.008161729 = product of:
      0.024485188 = sum of:
        0.024485188 = product of:
          0.048970375 = sum of:
            0.048970375 = weight(_text_:22 in 7411) [ClassicSimilarity], result of:
              0.048970375 = score(doc=7411,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.30952093 = fieldWeight in 7411, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7411)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    7.11.2008 10:40:22
  16. Faro, S.; Francesconi, E.; Sandrucci, V.: Thesauri KOS analysis and selected thesaurus mapping methodology on the project case-study (2007) 0.01
    0.008161729 = product of:
      0.024485188 = sum of:
        0.024485188 = product of:
          0.048970375 = sum of:
            0.048970375 = weight(_text_:22 in 2227) [ClassicSimilarity], result of:
              0.048970375 = score(doc=2227,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.30952093 = fieldWeight in 2227, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2227)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    7.11.2008 10:40:22
  17. Si, L.: Encoding formats and consideration of requirements for mapping (2007) 0.01
    0.0071415133 = product of:
      0.02142454 = sum of:
        0.02142454 = product of:
          0.04284908 = sum of:
            0.04284908 = weight(_text_:22 in 540) [ClassicSimilarity], result of:
              0.04284908 = score(doc=540,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.2708308 = fieldWeight in 540, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=540)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    26.12.2011 13:22:27
  18. Galinski, C.: Fragen der semantischen Interoperabilität brechen jetzt überall auf (o.J.) 0.01
    0.0061212964 = product of:
      0.01836389 = sum of:
        0.01836389 = product of:
          0.03672778 = sum of:
            0.03672778 = weight(_text_:22 in 4183) [ClassicSimilarity], result of:
              0.03672778 = score(doc=4183,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.23214069 = fieldWeight in 4183, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4183)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 1.2011 10:16:32
  19. Kahlawi, A,: ¬An ontology driven ESCO LOD quality enhancement (2020) 0.00
    0.0039819763 = product of:
      0.011945928 = sum of:
        0.011945928 = weight(_text_:a in 5959) [ClassicSimilarity], result of:
          0.011945928 = score(doc=5959,freq=18.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22931081 = fieldWeight in 5959, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5959)
      0.33333334 = coord(1/3)
    
    Abstract
    The labor market is a system that is complex and difficult to manage. To overcome this challenge, the European Union has launched the ESCO project which is a language that aims to describe this labor market. In order to support the spread of this project, its dataset was presented as linked open data (LOD). Since LOD is usable and reusable, a set of conditions have to be met. First, LOD must be feasible and high quality. In addition, it must provide the user with the right answers, and it has to be built according to a clear and correct structure. This study investigates the LOD of ESCO, focusing on data quality and data structure. The former is evaluated through applying a set of SPARQL queries. This provides solutions to improve its quality via a set of rules built in first order logic. This process was conducted based on a new proposed ESCO ontology.
    Type
    a
  20. Carbonaro, A.; Santandrea, L.: ¬A general Semantic Web approach for data analysis on graduates statistics 0.00
    0.0034978096 = product of:
      0.010493428 = sum of:
        0.010493428 = weight(_text_:a in 5309) [ClassicSimilarity], result of:
          0.010493428 = score(doc=5309,freq=20.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.20142901 = fieldWeight in 5309, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5309)
      0.33333334 = coord(1/3)
    
    Abstract
    Currently, several datasets released in a Linked Open Data format are available at a national and international level, but the lack of shared strategies concerning the definition of concepts related to the statistical publishing community makes difficult a comparison among given facts starting from different data sources. In order to guarantee a shared representation framework for what concerns the dissemination of statistical concepts about graduates, we developed SW4AL, an ontology-based system for graduate's surveys domain. The developed system transforms low-level data into an enriched information model and is based on the AlmaLaurea surveys covering more than 90% of Italian graduates. SW4AL: i) semantically describes the different peculiarities of the graduates; ii) promotes the structured definition of the AlmaLaurea data and the following publication in the Linked Open Data context; iii) provides their reuse in the open data scope; iv) enables logical reasoning about knowledge representation. SW4AL establishes a common semantic for addressing the concept of graduate's surveys domain by proposing the creation of a SPARQL endpoint and a Web based interface for the query and the visualization of the structured data.
    Type
    a

Years

Languages

  • e 74
  • d 10
  • no 1
  • More… Less…

Types

  • a 31
  • r 3
  • n 1
  • p 1
  • x 1
  • More… Less…