Search (2 results, page 1 of 1)

  • × author_ss:"Bethard, S."
  • × theme_ss:"Computerlinguistik"
  1. Levin, M.; Krawczyk, S.; Bethard, S.; Jurafsky, D.: Citation-based bootstrapping for large-scale author disambiguation (2012) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 246) [ClassicSimilarity], result of:
              0.009567685 = score(doc=246,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 246, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=246)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present a new, two-stage, self-supervised algorithm for author disambiguation in large bibliographic databases. In the first "bootstrap" stage, a collection of high-precision features is used to bootstrap a training set with positive and negative examples of coreferring authors. A supervised feature-based classifier is then trained on the bootstrap clusters and used to cluster the authors in a larger unlabeled dataset. Our self-supervised approach shares the advantages of unsupervised approaches (no need for expensive hand labels) as well as supervised approaches (a rich set of features that can be discriminatively trained). The algorithm disambiguates 54,000,000 author instances in Thomson Reuters' Web of Knowledge with B3 F1 of.807. We analyze parameters and features, particularly those from citation networks, which have not been deeply investigated in author disambiguation. The most important citation feature is self-citation, which can be approximated without expensive extraction of the full network. For the supervised stage, the minor improvement due to other citation features (increasing F1 from.748 to.767) suggests they may not be worth the trouble of extracting from databases that don't already have them. A lean feature set without expensive abstract and title features performs 130 times faster with about equal F1.
    Type
    a
  2. Laparra, E.; Binford-Walsh, A.; Emerson, K.; Miller, M.L.; López-Hoffman, L.; Currim, F.; Bethard, S.: Addressing structural hurdles for metadata extraction from environmental impact statements (2023) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 1042) [ClassicSimilarity], result of:
              0.006765375 = score(doc=1042,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 1042, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1042)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Natural language processing techniques can be used to analyze the linguistic content of a document to extract missing pieces of metadata. However, accurate metadata extraction may not depend solely on the linguistics, but also on structural problems such as extremely large documents, unordered multi-file documents, and inconsistency in manually labeled metadata. In this work, we start from two standard machine learning solutions to extract pieces of metadata from Environmental Impact Statements, environmental policy documents that are regularly produced under the US National Environmental Policy Act of 1969. We present a series of experiments where we evaluate how these standard approaches are affected by different issues derived from real-world data. We find that metadata extraction can be strongly influenced by nonlinguistic factors such as document length and volume ordering and that the standard machine learning solutions often do not scale well to long documents. We demonstrate how such solutions can be better adapted to these scenarios, and conclude with suggestions for other NLP practitioners cataloging large document collections.
    Type
    a