Search (3 results, page 1 of 1)

  • × author_ss:"Efron, M."
  • × theme_ss:"Retrievalalgorithmen"
  1. Efron, M.: Linear time series models for term weighting in information retrieval (2010) 0.00
    0.0030444188 = product of:
      0.0060888375 = sum of:
        0.0060888375 = product of:
          0.012177675 = sum of:
            0.012177675 = weight(_text_:a in 3688) [ClassicSimilarity], result of:
              0.012177675 = score(doc=3688,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.22931081 = fieldWeight in 3688, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3688)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Common measures of term importance in information retrieval (IR) rely on counts of term frequency; rare terms receive higher weight in document ranking than common terms receive. However, realistic scenarios yield additional information about terms in a collection. Of interest in this article is the temporal behavior of terms as a collection changes over time. We propose capturing each term's collection frequency at discrete time intervals over the lifespan of a corpus and analyzing the resulting time series. We hypothesize the collection frequency of a weakly discriminative term x at time t is predictable by a linear model of the term's prior observations. On the other hand, a linear time series model for a strong discriminators' collection frequency will yield a poor fit to the data. Operationalizing this hypothesis, we induce three time-based measures of term importance and test these against state-of-the-art term weighting models.
    Type
    a
  2. Efron, M.; Winget, M.: Query polyrepresentation for ranking retrieval systems without relevance judgments (2010) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 3469) [ClassicSimilarity], result of:
              0.011481222 = score(doc=3469,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 3469, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3469)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ranking information retrieval (IR) systems with respect to their effectiveness is a crucial operation during IR evaluation, as well as during data fusion. This article offers a novel method of approaching the system-ranking problem, based on the widely studied idea of polyrepresentation. The principle of polyrepresentation suggests that a single information need can be represented by many query articulations-what we call query aspects. By skimming the top k (where k is small) documents retrieved by a single system for multiple query aspects, we collect a set of documents that are likely to be relevant to a given test topic. Labeling these skimmed documents as putatively relevant lets us build pseudorelevance judgments without undue human intervention. We report experiments where using these pseudorelevance judgments delivers a rank ordering of IR systems that correlates highly with rankings based on human relevance judgments.
    Type
    a
  3. Efron, M.: Query expansion and dimensionality reduction : Notions of optimality in Rocchio relevance feedback and latent semantic indexing (2008) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 2020) [ClassicSimilarity], result of:
              0.009076704 = score(doc=2020,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 2020, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2020)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Rocchio relevance feedback and latent semantic indexing (LSI) are well-known extensions of the vector space model for information retrieval (IR). This paper analyzes the statistical relationship between these extensions. The analysis focuses on each method's basis in least-squares optimization. Noting that LSI and Rocchio relevance feedback both alter the vector space model in a way that is in some sense least-squares optimal, we ask: what is the relationship between LSI's and Rocchio's notions of optimality? What does this relationship imply for IR? Using an analytical approach, we argue that Rocchio relevance feedback is optimal if we understand retrieval as a simplified classification problem. On the other hand, LSI's motivation comes to the fore if we understand it as a biased regression technique, where projection onto a low-dimensional orthogonal subspace of the documents reduces model variance.
    Type
    a