Search (2 results, page 1 of 1)

  • × author_ss:"Ravichandra Rao, I.K."
  • × theme_ss:"Informetrie"
  1. Egghe, L.; Ravichandra Rao, I.K.: ¬The influence of the broadness of a query of a topic on its h-index : models and examples of the h-index of n-grams (2008) 0.03
    0.028448759 = product of:
      0.056897517 = sum of:
        0.056897517 = product of:
          0.113795035 = sum of:
            0.113795035 = weight(_text_:n in 2009) [ClassicSimilarity], result of:
              0.113795035 = score(doc=2009,freq=12.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.58343816 = fieldWeight in 2009, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2009)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The article studies the influence of the query formulation of a topic on its h-index. In order to generate pure random sets of documents, we used N-grams (N variable) to measure this influence: strings of zeros, truncated at the end. The used databases are WoS and Scopus. The formula h=T**1/alpha, proved in Egghe and Rousseau (2006) where T is the number of retrieved documents and is Lotka's exponent, is confirmed being a concavely increasing function of T. We also give a formula for the relation between h and N the length of the N-gram: h=D10**(-N/alpha) where D is a constant, a convexly decreasing function, which is found in our experiments. Nonlinear regression on h=T**1/alpha gives an estimation of , which can then be used to estimate the h-index of the entire database (Web of Science [WoS] and Scopus): h=S**1/alpha, , where S is the total number of documents in the database.
  2. Egghe, L.; Ravichandra Rao, I.K.: Duality revisited : construction of fractional frequency distributions based on two dual Lotka laws (2002) 0.03
    0.027873974 = product of:
      0.05574795 = sum of:
        0.05574795 = product of:
          0.1114959 = sum of:
            0.1114959 = weight(_text_:n in 1006) [ClassicSimilarity], result of:
              0.1114959 = score(doc=1006,freq=8.0), product of:
                0.19504215 = queryWeight, product of:
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.045236014 = queryNorm
                0.57165027 = fieldWeight in 1006, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  4.3116565 = idf(docFreq=1611, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1006)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Fractional frequency distributions of, for example, authors with a certain (fractional) number of papers are very irregular and, therefore, not easy to model or to explain. This article gives a first attempt to this by assuming two simple Lotka laws (with exponent 2): one for the number of authors with n papers (total count here) and one for the number of papers with n authors, n E N. Based an an earlier made convolution model of Egghe, interpreted and reworked now for discrete scores, we are able to produce theoretical fractional frequency distributions with only one parameter, which are in very close agreement with the practical ones as found in a large dataset produced earlier by Rao. The article also shows that (irregular) fractional frequency distributions are a consequence of Lotka's law, and are not examples of breakdowns of this famous historical law.