Search (2 results, page 1 of 1)

  • × author_ss:"Humphrey, S.M."
  • × theme_ss:"Automatisches Indexieren"
  1. Humphrey, S.M.: Automatic indexing of documents from journal descriptors : a preliminary investigation (1999) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 3769) [ClassicSimilarity], result of:
              0.011481222 = score(doc=3769,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 3769, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3769)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A new, fully automated approach for indedexing documents is presented based on associating textwords in a training set of bibliographic citations with the indexing of journals. This journal-level indexing is in the form of a consistent, timely set of journal descriptors (JDs) indexing the individual journals themselves. This indexing is maintained in journal records in a serials authority database. The advantage of this novel approach is that the training set does not depend on previous manual indexing of thousands of documents (i.e., any such indexing already in the training set is not used), but rather the relatively small intellectual effort of indexing at the journal level, usually a matter of a few thousand unique journals for which retrospective indexing to maintain consistency and currency may be feasible. If successful, JD indexing would provide topical categorization of documents outside the training set, i.e., journal articles, monographs, Web documents, reports from the grey literature, etc., and therefore be applied in searching. Because JDs are quite general, corresponding to subject domains, their most problable use would be for improving or refining search results
    Type
    a
  2. Humphrey, S.M.; Névéol, A.; Browne, A.; Gobeil, J.; Ruch, P.; Darmoni, S.J.: Comparing a rule-based versus statistical system for automatic categorization of MEDLINE documents according to biomedical specialty (2009) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 3300) [ClassicSimilarity], result of:
              0.00894975 = score(doc=3300,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 3300, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3300)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Automatic document categorization is an important research problem in Information Science and Natural Language Processing. Many applications, including, Word Sense Disambiguation and Information Retrieval in large collections, can benefit from such categorization. This paper focuses on automatic categorization of documents from the biomedical literature into broad discipline-based categories. Two different systems are described and contrasted: CISMeF, which uses rules based on human indexing of the documents by the Medical Subject Headings (MeSH) controlled vocabulary in order to assign metaterms (MTs), and Journal Descriptor Indexing (JDI), based on human categorization of about 4,000 journals and statistical associations between journal descriptors (JDs) and textwords in the documents. We evaluate and compare the performance of these systems against a gold standard of humanly assigned categories for 100 MEDLINE documents, using six measures selected from trec_eval. The results show that for five of the measures performance is comparable, and for one measure JDI is superior. We conclude that these results favor JDI, given the significantly greater intellectual overhead involved in human indexing and maintaining a rule base for mapping MeSH terms to MTs. We also note a JDI method that associates JDs with MeSH indexing rather than textwords, and it may be worthwhile to investigate whether this JDI method (statistical) and CISMeF (rule-based) might be combined and then evaluated showing they are complementary to one another.
    Type
    a