Search (1 results, page 1 of 1)

  • × author_ss:"Lin, J."
  • × author_ss:"Schwartz, R."
  • × theme_ss:"Automatisches Abstracting"
  1. Zajic, D.; Dorr, B.J.; Lin, J.; Schwartz, R.: Multi-candidate reduction : sentence compression as a tool for document summarization tasks (2007) 0.00
    0.0031324127 = product of:
      0.0062648254 = sum of:
        0.0062648254 = product of:
          0.012529651 = sum of:
            0.012529651 = weight(_text_:a in 944) [ClassicSimilarity], result of:
              0.012529651 = score(doc=944,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.23593865 = fieldWeight in 944, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=944)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article examines the application of two single-document sentence compression techniques to the problem of multi-document summarization-a "parse-and-trim" approach and a statistical noisy-channel approach. We introduce the multi-candidate reduction (MCR) framework for multi-document summarization, in which many compressed candidates are generated for each source sentence. These candidates are then selected for inclusion in the final summary based on a combination of static and dynamic features. Evaluations demonstrate that sentence compression is a valuable component of a larger multi-document summarization framework.
    Type
    a