Search (5 results, page 1 of 1)

  • × author_ss:"Liu, Y."
  • × author_ss:"Rousseau, R."
  1. Liu, Y.; Rafols, I.; Rousseau, R.: ¬A framework for knowledge integration and diffusion (2012) 0.00
    0.0032090992 = product of:
      0.0064181983 = sum of:
        0.0064181983 = product of:
          0.012836397 = sum of:
            0.012836397 = weight(_text_:a in 297) [ClassicSimilarity], result of:
              0.012836397 = score(doc=297,freq=20.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.24171482 = fieldWeight in 297, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=297)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - This paper aims to introduce a general framework for the analysis of knowledge integration and diffusion using bibliometric data. Design/methodology/approach - The authors propose that in order to characterise knowledge integration and diffusion of a given issue (the source, for example articles on a topic or by an organisation, etc.), one has to choose a set of elements from the source (the intermediary set, for example references, keywords, etc.). This set can then be classified into categories (cats), thus making it possible to investigate its diversity. The set can also be characterised according to the coherence of a network associated to it. Findings - This framework allows a methodology to be developed to assess knowledge integration and diffusion. Such methodologies can be useful for a number of science policy issues, including the assessment of interdisciplinarity in research and dynamics of research networks. Originality/value - The main contribution of this article is to provide a simple and easy to use generalisation of an existing approach to study interdisciplinarity, bringing knowledge integration and knowledge diffusion together in one framework.
    Type
    a
  2. Liu, Y.; Rousseau, R.: Towards a representation of diffusion and interaction of scientific ideas : the case of fiber optics communication (2012) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 2723) [ClassicSimilarity], result of:
              0.009471525 = score(doc=2723,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 2723, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2723)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The research question studied in this contribution is how to find an adequate representation to describe the diffusion of scientific ideas over time. We claim that citation data, at least of articles that act as concept symbols, can be considered to contain this information. As a case study we show how the founding article by Nobel Prize winner Kao illustrates the evolution of the field of fiber optics communication. We use a continuous description of discrete citation data in order to accentuate turning points and breakthroughs in the history of this field. Applying the principles explained in this contribution informetrics may reveal the trajectories along which science is developing.
    Type
    a
  3. Liu, Y.; Rousseau, R.: Citation analysis and the development of science : a case study using articles by some Nobel prize winners (2014) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 1197) [ClassicSimilarity], result of:
              0.007654148 = score(doc=1197,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 1197, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1197)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  4. Liu, Y.; Rousseau, R.: Knowledge diffusion through publications and citations : a case study using ESI-fields as unit of diffusion (2010) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 3334) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=3334,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 3334, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3334)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Two forms of diffusion are studied: diffusion by publications, originating from the fact that a group publishes in different fields; and diffusion by citations, originating from the fact that the group's publications are cited in different fields. The first form of diffusion originates from an internal mechanism by which the group itself expands its own borders. The second form is partly driven by an external mechanism, in the sense that other fields use or become interested in the original group's expertise, and partly by the group's internal dynamism, in the sense that their articles, being published in more and more fields, have the potential to be applied in these other fields. In this contribution, we focus on basic counting measures as measures of diffusion. We introduce the notions of field diffusion breadth, defined as the number of for Essential Science Indicators (ESI) fields in which a set of articles is cited, and field diffusion intensity, defined as the number of citing articles in one particular ESI field. Combined effects of publications and citations can be measured by the Gini evenness measure. Our approach is illustrated by a study of mathematics at Tongji University (Shanghai, China).
    Type
    a
  5. Liu, Y.; Rousseau, R.: Interestingness and the essence of citation : Thomas Reid and bibliographic description (2013) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 1764) [ClassicSimilarity], result of:
              0.007030784 = score(doc=1764,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 1764, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1764)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - This paper aims to provide a new insight into the reasons why authors cite. Design/methodology/approach The authors argue that, based on philosophical ideas about the essence of things, pure rational thinking about the role of citations leads to the answer. Findings - Citations originate from the interestingness of the investigated phenomenon. The essence of citation lies in the interaction between different ideas or perspectives on a phenomenon addressed in the citing as well as in the cited articles. Research limitations/implications - The findings only apply to ethical (not whimsical or self-serving) citations. As such citations reflect interactions of scientific ideas, they can reveal the evolution of science, revive the cognitive process of an investigated scientific phenomenon and reveal political and economic factors influencing the development of science. Originality/value - This article is the first to propose interestingness and the interaction of ideas as the basic reason for citing. This view on citations allows reverse engineering from citations to ideas and hence becomes useful for science policy.
    Type
    a