Search (3 results, page 1 of 1)

  • × type_ss:"a"
  • × type_ss:"p"
  1. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.06
    0.05940105 = sum of:
      0.054862697 = product of:
        0.21945079 = sum of:
          0.21945079 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
            0.21945079 = score(doc=862,freq=2.0), product of:
              0.39046928 = queryWeight, product of:
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.046056706 = queryNorm
              0.56201804 = fieldWeight in 862, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.046875 = fieldNorm(doc=862)
        0.25 = coord(1/4)
      0.004538352 = product of:
        0.009076704 = sum of:
          0.009076704 = weight(_text_:a in 862) [ClassicSimilarity], result of:
            0.009076704 = score(doc=862,freq=10.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.1709182 = fieldWeight in 862, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=862)
        0.5 = coord(1/2)
    
    Abstract
    This research revisits the classic Turing test and compares recent large language models such as ChatGPT for their abilities to reproduce human-level comprehension and compelling text generation. Two task challenges- summary and question answering- prompt ChatGPT to produce original content (98-99%) from a single text entry and sequential questions initially posed by Turing in 1950. We score the original and generated content against the OpenAI GPT-2 Output Detector from 2019, and establish multiple cases where the generated content proves original and undetectable (98%). The question of a machine fooling a human judge recedes in this work relative to the question of "how would one prove it?" The original contribution of the work presents a metric and simple grammatical set for understanding the writing mechanics of chatbots in evaluating their readability and statistical clarity, engagement, delivery, overall quality, and plagiarism risks. While Turing's original prose scores at least 14% below the machine-generated output, whether an algorithm displays hints of Turing's true initial thoughts (the "Lovelace 2.0" test) remains unanswerable.
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
    Type
    a
  2. Guizzardi, G.; Guarino, N.: Semantics, ontology and explanation (2023) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 976) [ClassicSimilarity], result of:
              0.007030784 = score(doc=976,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 976, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=976)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The terms 'semantics' and 'ontology' are increasingly appearing together with 'explanation', not only in the scientific literature, but also in organizational communication. However, all of these terms are also being significantly overloaded. In this paper, we discuss their strong relation under particular interpretations. Specifically, we discuss a notion of explanation termed ontological unpacking, which aims at explaining symbolic domain descriptions (conceptual models, knowledge graphs, logical specifications) by revealing their ontological commitment in terms of their assumed truthmakers, i.e., the entities in one's ontology that make the propositions in those descriptions true. To illustrate this idea, we employ an ontological theory of relations to explain (by revealing the hidden semantics of) a very simple symbolic model encoded in the standard modeling language UML. We also discuss the essential role played by ontology-driven conceptual models (resulting from this form of explanation processes) in properly supporting semantic interoperability tasks. Finally, we discuss the relation between ontological unpacking and other forms of explanation in philosophy and science, as well as in the area of Artificial Intelligence.
    Type
    a
  3. Geißelmann, F.: Perspektiven für eine DDC-Anwendung in den Bibliotheksverbünden (1999) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 486) [ClassicSimilarity], result of:
              0.006765375 = score(doc=486,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 486, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=486)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a