Search (37 results, page 1 of 2)

  • × subject_ss:"Information retrieval"
  1. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.01
    0.014300318 = product of:
      0.028600637 = sum of:
        0.028600637 = product of:
          0.042900953 = sum of:
            0.0057033943 = weight(_text_:a in 987) [ClassicSimilarity], result of:
              0.0057033943 = score(doc=987,freq=4.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.10809815 = fieldWeight in 987, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
            0.03719756 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
              0.03719756 = score(doc=987,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.23214069 = fieldWeight in 987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=987)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    This book covers the basics of semantic web technologies and indexing languages, and describes their contribution to improve languages as a tool for subject queries and knowledge exploration. The book is relevant to information scientists, knowledge workers and indexers. It provides a suitable combination of theoretical foundations and practical applications.
    Date
    23. 7.2017 13:49:22
  2. Ellis, D.: Progress and problems in information retrieval (1996) 0.01
    0.008266125 = product of:
      0.01653225 = sum of:
        0.01653225 = product of:
          0.049596746 = sum of:
            0.049596746 = weight(_text_:22 in 789) [ClassicSimilarity], result of:
              0.049596746 = score(doc=789,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.30952093 = fieldWeight in 789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=789)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Date
    26. 7.2002 20:22:46
  3. Lancaster, F.W.: Vocabulary control for information retrieval (1986) 0.01
    0.008266125 = product of:
      0.01653225 = sum of:
        0.01653225 = product of:
          0.049596746 = sum of:
            0.049596746 = weight(_text_:22 in 217) [ClassicSimilarity], result of:
              0.049596746 = score(doc=217,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.30952093 = fieldWeight in 217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=217)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Date
    22. 4.2007 10:07:51
  4. Anderson, J.D.; Perez-Carballo, J.: Information retrieval design : principles and options for information description, organization, display, and access in information retrieval databases, digital libraries, catalogs, and indexes (2005) 0.01
    0.0076078614 = product of:
      0.015215723 = sum of:
        0.015215723 = product of:
          0.022823583 = sum of:
            0.0073246 = weight(_text_:a in 1833) [ClassicSimilarity], result of:
              0.0073246 = score(doc=1833,freq=38.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.13882536 = fieldWeight in 1833, product of:
                  6.164414 = tf(freq=38.0), with freq of:
                    38.0 = termFreq=38.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1833)
            0.015498984 = weight(_text_:22 in 1833) [ClassicSimilarity], result of:
              0.015498984 = score(doc=1833,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.09672529 = fieldWeight in 1833, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1833)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Content
    Inhalt: Chapters 2 to 5: Scopes, Domains, and Display Media (pp. 47-102) Chapters 6 to 8: Documents, Analysis, and Indexing (pp. 103-176) Chapters 9 to 10: Exhaustivity and Specificity (pp. 177-196) Chapters 11 to 13: Displayed/Nondisplayed Indexes, Syntax, and Vocabulary Management (pp. 197-364) Chapters 14 to 16: Surrogation, Locators, and Surrogate Displays (pp. 365-390) Chapters 17 and 18: Arrangement and Size of Displayed Indexes (pp. 391-446) Chapters 19 to 21: Search Interface, Record Format, and Full-Text Display (pp. 447-536) Chapter 22: Implementation and Evaluation (pp. 537-541)
    Footnote
    Rez. in JASIST 57(2006) no.10, S.1412-1413 (R. W. White): "Information Retrieval Design is a textbook that aims to foster the intelligent user-centered design of databases for Information Retrieval (IR). The book outlines a comprehensive set of 20 factors. chosen based on prior research and the authors' experiences. that need to he considered during the design process. The authors provide designers with information on those factors to help optimize decision making. The book does not cover user-needs assessment, implementation of IR databases, or retries al systems, testing. or evaluation. Most textbooks in IR do not offer a substantive walkthrough of the design factors that need to be considered Mien des eloping IR databases. Instead. they focus on issues such as the implementation of data structures, the explanation of search algorithms, and the role of human-machine interaction in the search process. The book touches on all three, but its focus is on designing databases that can be searched effectively. not the tools to search them. This is an important distinction: despite its title. this book does not describe how to build retrieval systems. Professor Anderson utilizes his wealth of experience in cataloging and classification to bring a unique perspective on IR database design that may be useful for novices. for developers seeking to make sense of the design process, and for students as a text to supplement classroom tuition. The foreword and preface. by Jessica Milstead and James Anderson. respectively, are engaging and worthwhile reading. It is astounding that it has taken some 20 years for anyone to continue the stork of Milstead and write as extensively as Anderson does about such an important issue as IR database design. The remainder of the book is divided into two parts: Introduction and Background Issues and Design Decisions. Part 1 is a reasonable introduction and includes a glossary of the terminology that authors use in the book. It is very helpful to have these definitions early on. but the subject descriptors in the right margin are distracting and do not serve their purpose as access points to the text. The terminology is useful to have. as the authors definitions of concepts do not lit exactly with what is traditionally accepted in IR. For example. they use the term 'message' to icier to what would normally be called .'document" or "information object." and do not do a good job at distinguishing between "messages" and "documentary units". Part 2 describes components and attributes of 1R databases to help designers make design choices. The book provides them with information about the potential ramifications of their decisions and advocates a user-oriented approach to making them. Chapters are arranged in a seemingly sensible order based around these factors. and the authors remind us of the importance of integrating them. The authors are skilled at selecting the important factors in the development of seemingly complex entities, such as IR databases: how es er. the integration of these factors. or the interaction between them. is not handled as well as perhaps should be. Factors are presented in the order in which the authors feel then should be addressed. but there is no chapter describing how the factors interact. The authors miss an opportunity at the beginning of Part 2 where they could illustrate using a figure the interactions between the 20 factors they list in a way that is not possible with the linear structure of the book.
    . . . Those interested in using the book to design IR databases can work through the chapters in the order provided and end up with a set of requirements for database design. The steps outlined in this book can be rearranged in numerous orders depending on the particular circumstances. This book would benefit from a discussion of what orders are appropriate for different circumstances and bow the requirements outlined interact. I come away from Information Retrieval Design with mixed, although mainly positive feelings. Even though the aims of this book are made clear from the outset, it was still a disappointment to see issues such as implementation and evaluation covered in only a cursory manner. The book is very well structured. well written, and operates in a part of the space that bas been neglected for too long. The authors whet my appetite with discussion of design, and I would have liked to have heard a bit more about what happens in requirements' elicitation before the design issues base been identified and to impIementation after they have been addressed. Overall, the book is a comprehensive review of previous research supplemented by the authors' views on IR design. This book focuses on breadth of coverage rather than depth of coverage and is therefore potentially of more use to novices in the field. The writing style is clear, and the authors knowledge of the subject area is undoubted. I wouId recommend this book to anyone who wants to learn about IR database design and take advantage of the experience and insights of Anderson, one of tile visionaries it the field."
  5. Franke, F; Klein, A.; Schüller-Zwierlein, A.: Schlüsselkompetenzen : Literatur recherchieren in Bibliotheken und Internet (2010) 0.01
    0.005428176 = product of:
      0.010856352 = sum of:
        0.010856352 = product of:
          0.016284527 = sum of:
            0.003802263 = weight(_text_:a in 4721) [ClassicSimilarity], result of:
              0.003802263 = score(doc=4721,freq=4.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.072065435 = fieldWeight in 4721, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4721)
            0.012482265 = weight(_text_:h in 4721) [ClassicSimilarity], result of:
              0.012482265 = score(doc=4721,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.10979818 = fieldWeight in 4721, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4721)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: ZfBB 58(2011) H.3/4, S.240-242 (S. Köppl)
  6. Manning, C.D.; Raghavan, P.; Schütze, H.: Introduction to information retrieval (2008) 0.01
    0.005056957 = product of:
      0.010113914 = sum of:
        0.010113914 = product of:
          0.01517087 = sum of:
            0.0026886058 = weight(_text_:a in 4041) [ClassicSimilarity], result of:
              0.0026886058 = score(doc=4041,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.050957955 = fieldWeight in 4041, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4041)
            0.012482265 = weight(_text_:h in 4041) [ClassicSimilarity], result of:
              0.012482265 = score(doc=4041,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.10979818 = fieldWeight in 4041, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4041)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Content
    Inhalt: Boolean retrieval - The term vocabulary & postings lists - Dictionaries and tolerant retrieval - Index construction - Index compression - Scoring, term weighting & the vector space model - Computing scores in a complete search system - Evaluation in information retrieval - Relevance feedback & query expansion - XML retrieval - Probabilistic information retrieval - Language models for information retrieval - Text classification & Naive Bayes - Vector space classification - Support vector machines & machine learning on documents - Flat clustering - Hierarchical clustering - Matrix decompositions & latent semantic indexing - Web search basics - Web crawling and indexes - Link analysis Vgl. die digitale Fassung unter: http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf.
  7. Next generation search engines : advanced models for information retrieval (2012) 0.01
    0.0050420053 = product of:
      0.010084011 = sum of:
        0.010084011 = product of:
          0.015126016 = sum of:
            0.0073246 = weight(_text_:a in 357) [ClassicSimilarity], result of:
              0.0073246 = score(doc=357,freq=38.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.13882536 = fieldWeight in 357, product of:
                  6.164414 = tf(freq=38.0), with freq of:
                    38.0 = termFreq=38.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=357)
            0.007801416 = weight(_text_:h in 357) [ClassicSimilarity], result of:
              0.007801416 = score(doc=357,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.06862386 = fieldWeight in 357, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=357)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    The main goal of this book is to transfer new research results from the fields of advanced computer sciences and information science to the design of new search engines. The readers will have a better idea of the new trends in applied research. The achievement of relevant, organized, sorted, and workable answers- to name but a few - from a search is becoming a daily need for enterprises and organizations, and, to a greater extent, for anyone. It does not consist of getting access to structural information as in standard databases; nor does it consist of searching information strictly by way of a combination of key words. It goes far beyond that. Whatever its modality, the information sought should be identified by the topics it contains, that is to say by its textual, audio, video or graphical contents. This is not a new issue. However, recent technological advances have completely changed the techniques being used. New Web technologies, the emergence of Intranet systems and the abundance of information on the Internet have created the need for efficient search and information access tools.
    Recent technological progress in computer science, Web technologies, and constantly evolving information available on the Internet has drastically changed the landscape of search and access to information. Web search has significantly evolved in recent years. In the beginning, web search engines such as Google and Yahoo! were only providing search service over text documents. Aggregated search was one of the first steps to go beyond text search, and was the beginning of a new era for information seeking and retrieval. These days, new web search engines support aggregated search over a number of vertices, and blend different types of documents (e.g., images, videos) in their search results. New search engines employ advanced techniques involving machine learning, computational linguistics and psychology, user interaction and modeling, information visualization, Web engineering, artificial intelligence, distributed systems, social networks, statistical analysis, semantic analysis, and technologies over query sessions. Documents no longer exist on their own; they are connected to other documents, they are associated with users and their position in a social network, and they can be mapped onto a variety of ontologies. Similarly, retrieval tasks have become more interactive and are solidly embedded in a user's geospatial, social, and historical context. It is conjectured that new breakthroughs in information retrieval will not come from smarter algorithms that better exploit existing information sources, but from new retrieval algorithms that can intelligently use and combine new sources of contextual metadata.
    With the rapid growth of web-based applications, such as search engines, Facebook, and Twitter, the development of effective and personalized information retrieval techniques and of user interfaces is essential. The amount of shared information and of social networks has also considerably grown, requiring metadata for new sources of information, like Wikipedia and ODP. These metadata have to provide classification information for a wide range of topics, as well as for social networking sites like Twitter, and Facebook, each of which provides additional preferences, tagging information and social contexts. Due to the explosion of social networks and other metadata sources, it is an opportune time to identify ways to exploit such metadata in IR tasks such as user modeling, query understanding, and personalization, to name a few. Although the use of traditional metadata such as html text, web page titles, and anchor text is fairly well-understood, the use of category information, user behavior data, and geographical information is just beginning to be studied. This book is intended for scientists and decision-makers who wish to gain working knowledge about search engines in order to evaluate available solutions and to dialogue with software and data providers.
    Content
    Enthält die Beiträge: Das, A., A. Jain: Indexing the World Wide Web: the journey so far. Ke, W.: Decentralized search and the clustering paradox in large scale information networks. Roux, M.: Metadata for search engines: what can be learned from e-Sciences? Fluhr, C.: Crosslingual access to photo databases. Djioua, B., J.-P. Desclés u. M. Alrahabi: Searching and mining with semantic categories. Ghorbel, H., A. Bahri u. R. Bouaziz: Fuzzy ontologies building platform for Semantic Web: FOB platform. Lassalle, E., E. Lassalle: Semantic models in information retrieval. Berry, M.W., R. Esau u. B. Kiefer: The use of text mining techniques in electronic discovery for legal matters. Sleem-Amer, M., I. Bigorgne u. S. Brizard u.a.: Intelligent semantic search engines for opinion and sentiment mining. Hoeber, O.: Human-centred Web search.
    Vert, S.: Extensions of Web browsers useful to knowledge workers. Chen, L.-C.: Next generation search engine for the result clustering technology. Biskri, I., L. Rompré: Using association rules for query reformulation. Habernal, I., M. Konopík u. O. Rohlík: Question answering. Grau, B.: Finding answers to questions, in text collections or Web, in open domain or specialty domains. Berri, J., R. Benlamri: Context-aware mobile search engine. Bouidghaghen, O., L. Tamine: Spatio-temporal based personalization for mobile search. Chaudiron, S., M. Ihadjadene: Studying Web search engines from a user perspective: key concepts and main approaches. Karaman, F.: Artificial intelligence enabled search engines (AIESE) and the implications. Lewandowski, D.: A framework for evaluating the retrieval effectiveness of search engines.
  8. Knowledge organization and classification in international information retrieval (2004) 0.00
    0.004749654 = product of:
      0.009499308 = sum of:
        0.009499308 = product of:
          0.014248962 = sum of:
            0.0033269802 = weight(_text_:a in 1441) [ClassicSimilarity], result of:
              0.0033269802 = score(doc=1441,freq=4.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.06305726 = fieldWeight in 1441, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1441)
            0.010921981 = weight(_text_:h in 1441) [ClassicSimilarity], result of:
              0.010921981 = score(doc=1441,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.096073404 = fieldWeight in 1441, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1441)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in Mitteilungen VÖB 57(2004) H.3/4, S.83-84 (O. Oberhauser): "Der Klappentext zu diesem Buch, das gleichzeitig als Cataloging & Classification Quarterly, Jg. 37, Nr. 1/2, veröffentlicht wurde, weiss mit eindrucksvollen Lobpreisungen bekannter anglo-amerikanischer Professoren aufzuwarten. Das Werk ist ein Sammelband mit 14 Artikeln von Autoren aus sechs Ländern, unter denen Kanada mit sechs Beiträgen klar dominiert (was nicht weiter überraschend ist, da die Herausgeberinnen von dort stammen). Das deklarierte Ziel des Bandes ist die Behandlung von Themen, die im Zusammenhang mit Information und Wissen in einem internationalisierten Kontext von Relevanz sind. Dies wird in vier thematisch gegliederten Abschnitten versucht. Das erste dieser Kapitel, General Bibliographic Systems, enthält vier Aufsätze, deren erster die Rolle allgemeiner und spezialisierter Klassifikationssysteme unter den Auspizien von Interoperabilität und weltweitem Zugriff reflektiert. Die anderen behandeln eine Adaptierung der DDC für die Verwendung bei der Erschliessung feministischer Literatur, die Probleme bei der Übersetzung von Klassifikationen von einer Sprache/Kultur in eine andere sowie den multilingualen Zugriff auf Dokumente in bibliographischen Datenbanken durch mehrsprachige, mit UDK-Zahlen verknüpfte Deskriptoren. Die zweite Sektion (ebenfalls vier Artikel) ist mit Information Organization in Knowledge Resources betitelt. Ihre konkreten Themen sind a) die Schwächen bibliothekarischer sachlicher Suchsysteme im internationalen Web-Kontext, b) die Recherche erziehungswissenschaftlicher Web-Ressourcen mittels "subject trees" bzw. in virtuellen Bibliotheken, c) Techniken für Text- und Data-Mining im Rahmen von Wissensorganisation und -ermittlung sowie d) Ansätze für die Wissensermittlung in nicht-bibliographischen Datenbanken.
    Weitere Rez. in: KO 31(2004) no.2, S.116-117 (A. Shiri)
  9. Chu, H.: Information representation and retrieval in the digital age (2010) 0.00
    0.0045577493 = product of:
      0.0091154985 = sum of:
        0.0091154985 = product of:
          0.013673248 = sum of:
            0.0048469533 = weight(_text_:a in 92) [ClassicSimilarity], result of:
              0.0048469533 = score(doc=92,freq=26.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.09186576 = fieldWeight in 92, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.015625 = fieldNorm(doc=92)
            0.008826294 = weight(_text_:h in 92) [ClassicSimilarity], result of:
              0.008826294 = score(doc=92,freq=4.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.077639036 = fieldWeight in 92, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.015625 = fieldNorm(doc=92)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: JASIST 56(2005) no.2, S.215-216 (A. Heath): "What is small, thoroughly organized, and easy to understand? Well, it's Heting Chu's latest book an information retrieval. A very welcome release, this small literary addition to the field (only 248 pages) contains a concise and weIl-organized discussion of every major topic in information retrieval. The often-complex field of information retrieval is presented from its origin in the early 1950s to the present day. The organization of this text is top-notch, thus making this an easy read for even the novice. Unlike other titles in this area, Chu's user-friendly style of writing is done an purpose to properly introduce newcomers to the field in a less intimidating way. As stated by the author in the Preface, the purpose of the book is to "present a systematic, thorough yet nontechnical view of the field by using plain language to explain complex subjects." Chu has definitely struck up the right combination of ingredients. In a field so broad and complex, a well-organized presentation of topics that don't trip an themselves is essential. The use of plain language where possible is also a good choice for this topic because it allows one to absorb topics that are, by nature, not as easy to grasp. For instance, Chapters 6 and 7, which cover retrieval approaches and techniques, an often painstaking topic for many students and teachers is deftly handled with the use of tables that can be used to compare and contrast the various models discussed. I particularly loved Chu's use of Koll's 2000 article from the Bulletin of the American Society for Information Science to explain subject searching at the beginning of Chapter 6, which discusses the differences between browsing and searching. The Koll article uses the task of finding a needle in a haystack as an analogy.
    Chu's intent with this book is clear throughout the entire text. With this presentation, she writes with the novice in mind or as she puls it in the Preface, "to anyone who is interested in learning about the field, particularly those who are new to it." After reading the text, I found that this book is also an appropriate reference book for those who are somewhat advanced in the field. I found the chapters an information retrieval models and techniques, metadata, and AI very informative in that they contain information that is often rather densely presented in other texts. Although, I must say, the metadata section in Chapter 3 is pretty basic and contains more questions about the area than information. . . . It is an excellent book to have in the classroom, an your bookshelf, etc. It reads very well and is written with the reader in mind. If you are in need of a more advanced or technical text an the subject, this is not the book for you. But, if you are looking for a comprehensive, manual that can be used as a "flip-through," then you are in luck."
    Weitere Rez. in: Rez. in: nfd 55(2004) H.4, S.252 (D. Lewandowski):"Die Zahl der Bücher zum Thema Information Retrieval ist nicht gering, auch in deutscher Sprache liegen einige Titel vor. Trotzdem soll ein neues (englischsprachiges) Buch zu diesem Thema hier besprochen werden. Dieses zeichnet sich durch eine Kürze (nur etwa 230 Seiten Text) und seine gute Verständlichkeit aus und richtet sich damit bevorzugt an Studenten in den ersten Semestern. Heting Chu unterrichtet seit 1994 an Palmer School of Library and Information Science der Long Island University New York. Dass die Autorin viel Erfahrung in der Vermittlung des Stoffs in ihren Information-Retrieval-Veranstaltungen sammeln konnte, merkt man dem Buch deutlich an. Es ist einer klaren und verständlichen Sprache geschrieben und führt in die Grundlagen der Wissensrepräsentation und des Information Retrieval ein. Das Lehrbuch behandelt diese Themen als Gesamtkomplex und geht damit über den Themenbereich ähnlicher Bücher hinaus, die sich in der Regel auf das Retrieval beschränken. Das Buch ist in zwölf Kapitel gegliedert, wobei das erste Kapitel eine Übersicht über die zu behandelnden Themen gibt und den Leser auf einfache Weise in die Grundbegriffe und die Geschichte des IRR einführt. Neben einer kurzen chronologischen Darstellung der Entwicklung der IRR-Systeme werden auch vier Pioniere des Gebiets gewürdigt: Mortimer Taube, Hans Peter Luhn, Calvin N. Mooers und Gerard Salton. Dies verleiht dem von Studenten doch manchmal als trocken empfundenen Stoff eine menschliche Dimension. Das zweite und dritte Kapitel widmen sich der Wissensrepräsentation, wobei zuerst die grundlegenden Ansätze wie Indexierung, Klassifikation und Abstracting besprochen werden. Darauf folgt die Behandlung von Wissensrepräsentation mittels Metadaten, wobei v.a. neuere Ansätze wie Dublin Core und RDF behandelt werden. Weitere Unterkapitel widmen sich der Repräsentation von Volltexten und von Multimedia-Informationen. Die Stellung der Sprache im IRR wird in einem eigenen Kapitel behandelt. Dabei werden in knapper Form verschiedene Formen des kontrollierten Vokabulars und die wesentlichen Unterscheidungsmerkmale zur natürlichen Sprache erläutert. Die Eignung der beiden Repräsentationsmöglichkeiten für unterschiedliche IRR-Zwecke wird unter verschiedenen Aspekten diskutiert.
  10. New directions in human information behavior (2006) 0.00
    0.0038529523 = product of:
      0.0077059045 = sum of:
        0.0077059045 = product of:
          0.011558857 = sum of:
            0.003757441 = weight(_text_:a in 577) [ClassicSimilarity], result of:
              0.003757441 = score(doc=577,freq=10.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.07121591 = fieldWeight in 577, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=577)
            0.007801416 = weight(_text_:h in 577) [ClassicSimilarity], result of:
              0.007801416 = score(doc=577,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.06862386 = fieldWeight in 577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=577)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    New Directions in Human Information Behavior, co-edited by Drs. Amanda Spink and Charles Cole provides an understanding of the new directions, leading edge theories and models in human information behavior. Information behavior is conceptualized as complex human information related processes that are embedded within an individual's everyday social and life processes. The book presents chapters by an interdisciplinary range of scholars who show new directions that often challenge the established views and paradigms of information behavior studies. Beginning with an evolutionary framework, the book examines information behaviors over various epochs of human existence from the Palaeolithic Era and within pre-literate societies, to contemporary behaviors by 21st century humans. Drawing upon social and psychological science theories the book presents a more integrated and holistic approach to the understanding of information behaviors that include multitasking and non-linear longitudinal processes, individuals' information ground, information practices and information sharing, digital behaviors and human information organizing behaviors. The final chapter of the book integrates these new approaches and presents an overview of the key trends, theories and models for further research. This book is directly relevant to information scientists, librarians, social and evolutionary psychologists. Undergraduate and graduate students, academics and information professionals interested in human information behavior will find this book of particular benefit.
    Content
    Inhalt: Introduction: New Directions in Human Information Behavior, Amanda Spink and Charles Cole.- Emerging Evolutionary Approach to Human Information Behavior, Amanda Spink and James Currier.- Information Behavior in Pre-Literate Societies, Andrew D. Madden, Jared Bryson and Joe Palimi.- Towards a Social Framework for Information Seeking, Eszter Hargittai and Amanda Hinnant.- Mapping Textually-Mediated Information Practice in Clinical Midwifery Care, Pamela McKenzie.- Information Grounds: Theoretical Basis and Empirical Findings on Information Flow in Social Settings, Karen E. Fisher and Charles M. Naumer.-Information Sharing, Sanna Talja and Preben Hansen.- Multitasking and Coordinating Framework for Human Information Behavior, Amanda Spink, Minsoo Park and Charles Cole.- A Nonlinear Perspective on Information Seeking, Allen Foster.- A Cognitive Framework for Human Information Behavior: The Place of Metaphor in Human Information Organizing Behavior, Charles Cole and John Leide.- The Digital Information Consumer, David Nicholas, Paul Huntingron, Peter Williams and Tom Dubrowolski.- Integrating Framework and Further Research.
    Editor
    Spink, A. u. C. Cole
    Footnote
    Rez. in: Mitt VÖB 59(2006) H.2, S.83-88 (O. Oberhauser): "Dieser neue Sammelband möchte Interessenten aus den Bereichen Informationswissenschaft, Bibliothekswesen sowie Sozial- und Evolutionspsychologie aktuelle Entwicklungen und neue theoretische Ansätze auf dem Gebiet des menschlichen Informationsverhaltens-human information behavio(u)r bzw. kurz HIB - vermitteln. Es geht dabei um die komplexen Informationsprozesse, die in das alltägliche Sozialverhalten und die Lebensabläufe menschlicher Individuen eingebettet sind. Die beiden Herausgeber sind in diesem Teilbereich der Informationswissenschaft auch durch eine Reihe anderer Publikationen einschlägig ausgewiesen: Amanda Spink (vormals Universität Pittsburgh), die sich kürzlich selbst in aller Bescheidenheit als "world-class ICT researcher" beschrieb,' ist Professorin an der Technischen Universität Queensland (Australien); Charles Cole ist Research Associate (wissenschaftlicher Projektmitarbeiter) an der McGill University in Montreal und selbständiger Berater für Informationsdesign. Gemeinsam haben Spink und Cole zuletzt, ebenfalls bei Springer, eine weitere Aufsatzsammlung - New Directions in Cognitive Information Retrieval (2005) - herausgegeben. Das Buch versammelt zwölf Beiträge ("Kapitel"), die in fünf Sektionen dargeboten werden, wobei es sich allerdings bei den Sektionen 1 und 5 (= Kapitel 1 und 12) um Einleitung und Zusammenschau der Herausgeber handelt. Während erstere eigentlich nur eine Übersicht über die Gliederung und die Beiträge des Buches, die jeweils mit Abstracts beschrieben werden, darstellt, kann letztere als eigenständiger Beitrag gelten, der versucht, die in diesem Band angesprochenen Aspekte in einem vorläufigen HIB-Modell zu integrieren.
  11. Chu, H.: Information representation and retrieval in the digital age (2010) 0.00
    0.0036406606 = product of:
      0.007281321 = sum of:
        0.007281321 = product of:
          0.021843962 = sum of:
            0.021843962 = weight(_text_:h in 377) [ClassicSimilarity], result of:
              0.021843962 = score(doc=377,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19214681 = fieldWeight in 377, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=377)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
  12. Stock, W.G.: Information Retrieval : Informationen suchen und finden (2007) 0.00
    0.0022065735 = product of:
      0.004413147 = sum of:
        0.004413147 = product of:
          0.0132394405 = sum of:
            0.0132394405 = weight(_text_:h in 1851) [ClassicSimilarity], result of:
              0.0132394405 = score(doc=1851,freq=4.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.11645855 = fieldWeight in 1851, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1851)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: BuB 59(2007) H.3, S.238-239 (J. Plieninger): " ... Wertvoll ist bei Stocks »Information Retrieval« auch der Blick auf die Informationsbedürfnisse und das Verhalten der Benutzer. Er beschreibt auch daraus folgende unterschiedliche Fragestellungen für die Recherche, etwa ob es sich um ein konkretes Informationsbedürfnis handelt (Concrete Information Need - CIN) oder um ein problemorientiertes (Problem Oriented Information Need - POIN; Seite 51 f.). Das Buch geht über das hinaus, was man als Bibliothekar/in sonst auf dem Suchsektor zu lesen gewohnt ist - genau die richtige Mischung an Informationen zur vielgestaltigen Methodik, Hintergrundinformationen und Schilderung praktischer Anwendungsbereiche. Insofern stellt die Lektüre dieses grundlegenden Buches eine Bereicherung für alle dar, die mit der Recherche im weitesten Sinne zu tun haben: Neben Informationswissenschaftlern und Studierenden dieses Faches sind es vor allem Bibliothekare, die mit dem Suchen und Finden sowie der Schulung in diesem Bereich beauftragt sind."
    Weitere Rez. in: Information - Wissenschaft und Praxis 58(2007) H.5, S.318-319 (R. Ferber): "Mit Information Retrieval - Informationen suchen und finden von Wolfgang G. Stock liegt ein ca. 600-seitiges Lehrbuch aus dem Oldenbourg Verlag vor. Der Einleitung kann man entnehmen, dass es sich dabei nur um den ersten Band einer vierbändigen Reihe zur Informationswissenschaft handelt. Der Klappentext verspricht die umfassende Vermittlung grundlegender Kenntnisse über Theorien, Modelle und Anwendungen des Information Retrieval, dargestellt als einheitliche Wissenschaftsdisziplin, die klassische Modelle und aktuelle Ansätze des Web Information Retrieval umfasst. Wie sein Umfang bereits erwarten lässt, bietet das Buch einen breiten Zugang zum Thema Information Retrieval. Es ist in weiten Teilen in einem erzählenden und kommunikativen Stil geschrieben, der durch viele Beispiele und rhetorische Fragen den Zugang zum Thema erleichtert. . . . Insgesamt bietet das Buch eine gute und ausführliche Einführung in das Thema Information Retrieval. Seine Stärke sind die Breite der Quellen und dargestellten Ansätze, die ausführliche Einführung in die verschiedenen Themen, Fragestellungen und Lösungsansätze, insbesondere in den Bereichen Textstatistik und Informetrie. Es ist gut zu lesen, auch wenn man sich manchmal etwas mehr inhaltliche Stringenz wünschen würde. Die Merk(ab) sätze am Schluss jedes Kapitels erleichtern auch dem eiligen Leser die Orientierung in dem durchaus umfangreichen Werk."
  13. Lalmas, M.: XML retrieval (2009) 0.00
    0.0018577286 = product of:
      0.0037154572 = sum of:
        0.0037154572 = product of:
          0.011146371 = sum of:
            0.011146371 = weight(_text_:a in 4998) [ClassicSimilarity], result of:
              0.011146371 = score(doc=4998,freq=22.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.21126054 = fieldWeight in 4998, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4998)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Abstract
    Documents usually have a content and a structure. The content refers to the text of the document, whereas the structure refers to how a document is logically organized. An increasingly common way to encode the structure is through the use of a mark-up language. Nowadays, the most widely used mark-up language for representing structure is the eXtensible Mark-up Language (XML). XML can be used to provide a focused access to documents, i.e. returning XML elements, such as sections and paragraphs, instead of whole documents in response to a query. Such focused strategies are of particular benefit for information repositories containing long documents, or documents covering a wide variety of topics, where users are directed to the most relevant content within a document. The increased adoption of XML to represent a document structure requires the development of tools to effectively access documents marked-up in XML. This book provides a detailed description of query languages, indexing strategies, ranking algorithms, presentation scenarios developed to access XML documents. Major advances in XML retrieval were seen from 2002 as a result of INEX, the Initiative for Evaluation of XML Retrieval. INEX, also described in this book, provided test sets for evaluating XML retrieval effectiveness. Many of the developments and results described in this book were investigated within INEX.
  14. Carande, R.: Automation in library reference services : a handbook (1993) 0.00
    0.0017534725 = product of:
      0.003506945 = sum of:
        0.003506945 = product of:
          0.0105208345 = sum of:
            0.0105208345 = weight(_text_:a in 765) [ClassicSimilarity], result of:
              0.0105208345 = score(doc=765,freq=10.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19940455 = fieldWeight in 765, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=765)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Abstract
    The future of reference librarianship as a viable part of the library depends on developing a proactive, participatory approach to automation. Aims to pull together and explain the important elements of change likely to influence library information services. Reviews some of the ways various schools of thought look at library information and communication. Focuses on information, its relationship to the library, and its rate of growth. Discusses the dynamics of communications as a process and examines it vis-a-vis the library
  15. Lankes, R.D.: New concepts in digital reference (2009) 0.00
    0.0017354877 = product of:
      0.0034709754 = sum of:
        0.0034709754 = product of:
          0.010412926 = sum of:
            0.010412926 = weight(_text_:a in 4999) [ClassicSimilarity], result of:
              0.010412926 = score(doc=4999,freq=30.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19735932 = fieldWeight in 4999, product of:
                  5.477226 = tf(freq=30.0), with freq of:
                    30.0 = termFreq=30.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4999)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Abstract
    Let us start with a simple scenario: a man asks a woman "how high is Mount Everest?" The woman replies "29,029 feet." Nothing could be simpler. Now let us suppose that rather than standing in a room, or sitting on a bus, the man is at his desk and the woman is 300 miles away with the conversation taking place using e-mail. Still simple? Certainly--it happens every day. So why all the bother about digital (virtual, electronic, chat, etc.) reference? If the man is a pilot flying over Mount Everest, the answer matters. If you are a lawyer going to court, the identity of the woman is very important. Also, if you ever want to find the answer again, how that transaction took place matters a lot. Digital reference is a deceptively simple concept on its face: "the incorporation of human expertise into the information system." This lecture seeks to explore the question of how human expertise is incorporated into a variety of information systems, from libraries, to digital libraries, to information retrieval engines, to knowledge bases. What we learn through this endeavor, begun primarily in the library context, is that the models, methods, standards, and experiments in digital reference have wide applicability. We also catch a glimpse of an unfolding future in which ubiquitous computing makes the identification, interaction, and capture of expertise increasingly important. It is a future that is much more complex than we had anticipated. It is a future in which documents and artifacts are less important than the contexts of their creation and use.
    Content
    Table of Contents: Defining Reference in a Digital Age / Conversations / Digital Reference in Practice / Digital Reference an a New Future / Conclusion
  16. Cooke, A.: ¬A guide to finding quality information on the Internet : selection and evaluation strategies (1999) 0.00
    0.0015842763 = product of:
      0.0031685526 = sum of:
        0.0031685526 = product of:
          0.0095056575 = sum of:
            0.0095056575 = weight(_text_:a in 662) [ClassicSimilarity], result of:
              0.0095056575 = score(doc=662,freq=4.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.18016359 = fieldWeight in 662, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=662)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
  17. Arafat, S.; Ashoori, E.: Search foundations : toward a science of technology-mediated experience (2018) 0.00
    0.0015522675 = product of:
      0.003104535 = sum of:
        0.003104535 = product of:
          0.009313605 = sum of:
            0.009313605 = weight(_text_:a in 158) [ClassicSimilarity], result of:
              0.009313605 = score(doc=158,freq=24.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.17652355 = fieldWeight in 158, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=158)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Abstract
    This book contributes to discussions within Information Retrieval and Science (IR&S) by improving our conceptual understanding of the relationship between humans and technology. A call to redirect the intellectual focus of information retrieval and science (IR&S) toward the phenomenon of technology-mediated experience. In this book, Sachi Arafat and Elham Ashoori issue a call to reorient the intellectual focus of information retrieval and science (IR&S) away from search and related processes toward the more general phenomenon of technology-mediated experience. Technology-mediated experience accounts for an increasing proportion of human lived experience; the phenomenon of mediation gets at the heart of the human-machine relationship. Framing IR&S more broadly in this way generalizes its problems and perspectives, dovetailing them with those shared across disciplines dealing with socio-technical phenomena. This reorientation of IR&S requires imagining it as a new kind of science: a science of technology-mediated experience (STME). Arafat and Ashoori not only offer detailed analysis of the foundational concepts underlying IR&S and other technical disciplines but also boldly call for a radical, systematic appropriation of the sciences and humanities to create a better understanding of the human-technology relationship. Arafat and Ashoori discuss the notion of progress in IR&S and consider ideas of progress from the history and philosophy of science. They argue that progress in IR&S requires explicit linking between technical and nontechnical aspects of discourse. They develop a network of basic questions and present a discursive framework for addressing these questions. With this book, Arafat and Ashoori provide both a manifesto for the reimagining of their field and the foundations on which a reframed IR&S would rest.
    Content
    The embedding of the foundational in the adhoc -- Notions of progress in information retrieval -- From growth to progress I : methodology for understanding progress -- From growth to progress II : the network of discourse -- Basic questions characterising foundations discourse -- Enduring nature of foundations -- Foundations as the way to the authoritative against the authoritarian : a conclusion
  18. ¬The thesaurus: review, renaissance and revision (2004) 0.00
    0.0015400925 = product of:
      0.003080185 = sum of:
        0.003080185 = product of:
          0.009240555 = sum of:
            0.009240555 = weight(_text_:a in 3243) [ClassicSimilarity], result of:
              0.009240555 = score(doc=3243,freq=42.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.17513901 = fieldWeight in 3243, product of:
                  6.4807405 = tf(freq=42.0), with freq of:
                    42.0 = termFreq=42.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3243)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Content
    Enthält u.a. folgende Aussage von J. Aitchison u. S. Dextre Clarke: "We face a paradox. Ostensibly, the need and the opportunity to apply thesauri to information retrieval are greater than ever before. On the other hand, users resist most efforts to persuade them to apply one. The drive for interoperability of systems means we must design our vocabularies for easy integration into downstream applications such as content management systems, indexing/metatagging interfaces, search engines, and portals. Summarizing the search for vocabularies that work more intuitively, we see that there are trends working in opposite directions. In the hugely popular taxonomies an the one hand, relationships between terms are more loosely defined than in thesauri. In the ontologies that will support computer-to-computer communications in AI applications such as the Semantic Web, we see the need for much more precisely defined term relationships."
    Enthält die Beiträge: Spiteri, L.F.: Word association testing and thesaurus construction: a pilot study. Aitchison, J., S.G. Dextre-Clarke: The Thesaurus: a historical viewpoint, with a look to the future. Thomas, A.R.: Teach yourself thesaurus: exercises, reading, resources. Shearer, J.R.: A practical exercise in building a thesaurus. Nielsen, M.L.: Thesaurus construction: key issues and selected readings. Riesland, M.A.: Tools of the trade: vocabulary management software. Will, L.: Thesaurus consultancy. Owens, L.A., P.A. Cochrane: Thesaurus evaluation. Greenberg, J.: User comprehension and application of information retrieval thesauri. Johnson, E.H.: Distributed thesaurus Web services. Thomas, A.R., S.K. Roe: An interview with Dr. Amy J. Warner. Landry, P.: Multilingual subject access: the linking approach of MACS.
    Footnote
    Rez. in: KO 32(2005) no.2, S.95-97 (A. Gilchrist):"It might be thought unfortunate that the word thesaurus is assonant with prehistoric beasts but as this book clearly demonstrates, the thesaurus is undergoing a notable revival, and we can remind ourselves that the word comes from the Greek thesaurus, meaning a treasury. This is a useful and timely source book, bringing together ten chapters, following an Editorial introduction and culminating in an interview with a member of the team responsible for revising the NISO Standard Guidelines for the construction, format and management of monolingual thesauri; formal proof of the thesaural renaissance. Though predominantly an American publication, it is good to see four English authors as well as one from Canada and one from Denmark; and with a good balance of academics and practitioners. This has helped to widen the net in the citing of useful references. While the techniques of thesaurus construction are still basically sound, the Editors, in their introduction, point out that the thesaurus, in its sense of an information retrieval tool is almost exactly 50 years old, and that the information environment of today is radically different. They claim three purposes for the compilation: "to acquaint or remind the Library and Information Science community of the history of the development of the thesaurus and standards for thesaurus construction. to provide bibliographies and tutorials from which any reader can become more grounded in her or his understanding of thesaurus construction, use and evaluation. to address topics related to thesauri but that are unique to the current digital environment, or network of networks." This last purpose, understandably, tends to be the slightly more tentative part of the book, but as Rosenfeld and Morville said in their book Information architecture for the World Wide Web "thesauri [will] become a key tool for dealing with the growing size and importance of web sites and intranets". The evidence supporting their belief has been growing steadily in the seven years since the first edition was published.
    The didactic parts of the book are a collection of exercises, readings and resources constituting a "Teach yourself " chapter written by Alan Thomas, ending with the warning that "New challenges include how to devise multi-functional and usersensitive vocabularies, corporate taxonomies and ontologies, and how to apply the transformative technology to them." This is absolutely right, and there is a need for some good writing that would tackle these issues. Another chapter, by James Shearer, skilfully manages to compress a practical exercise in building a thesaurus into some twenty A5 size pages. The third chapter in this set, by Marianne Lykke Nielsen, contains extensive reviews of key issues and selected readings under eight headings from the concept of the thesaurus, through the various construction stages and ending with automatic construction techniques. . . . This is a useful and approachable book. It is a pity that the index is such a poor advertisement for vocabulary control and usefulness."
  19. O'Connor, B.C.; Kearns, J.; Anderson, R.L.: Doing things with information : beyond indexing and abstracting (2008) 0.00
    0.0014861829 = product of:
      0.0029723658 = sum of:
        0.0029723658 = product of:
          0.008917097 = sum of:
            0.008917097 = weight(_text_:a in 4297) [ClassicSimilarity], result of:
              0.008917097 = score(doc=4297,freq=22.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.16900843 = fieldWeight in 4297, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4297)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Abstract
    The relationship between a person with a question and a source of information is complex. Indexing and abstracting often fail because too much emphasis is put on the mechanics of description, and too little has been given as to what ought to be represented. Research literature suggests that inappropriate representation results in failed searches a significant number of times, perhaps even in a majority of cases. "Doing Things with Information" seeks to rectify this unfortunate situation by emphasizing methods of modeling and constructing appropriate representations of such questions and documents. Students in programs of information studies will find focal points for discussion about system design and refinement of existing systems. Librarians, scholars, and those who work within large document collections, whether paper or electronic, will find insights into the strengths and weaknesses of the access systems they use.
    Content
    Inhalt: 1. Background concepts and models 2. Considerations of representation 3. Representation, function, and utility 4. Failures of representation: Indeterminacy and depth 5. Aboutness and user-generated descriptors 6. Responses to indeterminacy 7. Doing things with word-based documents 8. Functional application of information measurement 9. Functional ontology construction 10. Creek pebbles: A summary metaphor and touchstone for exploration
    Footnote
    The authors state that this book emerged from a proposal to do a second edition of Explorations in Indexing and Abstracting (O'Connor 1996); much of its content is the result of the authors' reaction to the reviews of this first edition and their realization for "the necessity to address some more fundamental questions". Rez. in: KO 38(2011) no.1, S.62-64 (L.F. Spiteri): "This book provides a good overview of the relationship between the document and the user; in this regard, it reinforces the importance of the clientcentred approach to the design of document representation systems. In the final chapter, the authors state: "We have offered examples of new ways to think about messages in all sorts of media and how they might be discovered, analyzed, synthesized, and generated. We brought together philosophical, scientific, and engineering notions into a fundamental model for just how we might understand doing this with information" (p. 225). The authors have certainly succeeded in highlighting the complex processes, nature, and implications of document representation systems, although, as has been seen, the novelty of some of their discussions and suggestions is sometimes limited. With further explanation, the FOC model may serve as a useful way to understand how to build document representation systems to better meet user needs."; vgl.: http://www.ergon-verlag.de/isko_ko/downloads/ko_38_2011_1e.pdf.
  20. Cole, C.: Information need : a theory connecting information search to knowledge formation (2012) 0.00
    0.001344303 = product of:
      0.002688606 = sum of:
        0.002688606 = product of:
          0.008065818 = sum of:
            0.008065818 = weight(_text_:a in 4985) [ClassicSimilarity], result of:
              0.008065818 = score(doc=4985,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.15287387 = fieldWeight in 4985, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4985)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Content
    Inhalt: The importance of information need -- The history of information need -- The framework for our discussion -- Modeling the user in information search -- Information seeking's conceptualization of information need during information search -- Information use -- Adaptation : internal information flows and knowledge generation -- A theory of information need -- How information need works -- The user's situation in the pre-focus search -- The situation of user's information need in pre-focus information search -- The selection concept -- A review of the user's pre-focus information search -- How information need works in a focusing search -- Circles 1 to 5 : how information need works -- Corroborating research -- Applying information need -- The astrolabe : an information system for stage 3 information exploration -- Conclusion.

Years

Languages

  • e 33
  • d 2
  • More… Less…

Types

  • m 37
  • s 7

Subjects

Classifications