Search (105 results, page 1 of 6)

  • × theme_ss:"Theorie verbaler Dokumentationssprachen"
  1. Ruge, G.: ¬A spreading activation network for automatic generation of thesaurus relationships (1991) 0.03
    0.034364372 = product of:
      0.068728745 = sum of:
        0.068728745 = product of:
          0.10309311 = sum of:
            0.016298808 = weight(_text_:a in 4506) [ClassicSimilarity], result of:
              0.016298808 = score(doc=4506,freq=6.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.3089162 = fieldWeight in 4506, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4506)
            0.0867943 = weight(_text_:22 in 4506) [ClassicSimilarity], result of:
              0.0867943 = score(doc=4506,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.5416616 = fieldWeight in 4506, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4506)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Date
    8.10.2000 11:52:22
    Source
    Library science with a slant to documentation. 28(1991) no.4, S.125-130
    Type
    a
  2. Mikacic, M.: Statistical system for subject designation (SSSD) for libraries in Croatia (1996) 0.03
    0.026484666 = product of:
      0.052969333 = sum of:
        0.052969333 = product of:
          0.079454 = sum of:
            0.009313605 = weight(_text_:a in 2943) [ClassicSimilarity], result of:
              0.009313605 = score(doc=2943,freq=6.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.17652355 = fieldWeight in 2943, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2943)
            0.07014039 = weight(_text_:22 in 2943) [ClassicSimilarity], result of:
              0.07014039 = score(doc=2943,freq=4.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.4377287 = fieldWeight in 2943, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2943)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Describes the developments of the Statistical System for Subject Designation (SSSD): a syntactical system for subject designation for libraries in Croatia, based on the construction of subject headings in agreement with the theory of the sentence nature of subject headings. The discussion is preceded by a brief summary of theories underlying basic principles and fundamental rules of the alphabetical subject catalogue
    Date
    31. 7.2006 14:22:21
    Source
    Cataloging and classification quarterly. 22(1996) no.1, S.77-93
    Type
    a
  3. Schmitz-Esser, W.: Language of general communication and concept compatibility (1996) 0.02
    0.022905817 = product of:
      0.045811635 = sum of:
        0.045811635 = product of:
          0.06871745 = sum of:
            0.0067215143 = weight(_text_:a in 6089) [ClassicSimilarity], result of:
              0.0067215143 = score(doc=6089,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.12739488 = fieldWeight in 6089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=6089)
            0.061995935 = weight(_text_:22 in 6089) [ClassicSimilarity], result of:
              0.061995935 = score(doc=6089,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.38690117 = fieldWeight in 6089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=6089)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Pages
    S.11-22
    Type
    a
  4. Haldenwanger, H.H.M.: Begriff und Sprache in der Dokumentation (1961) 0.02
    0.020227827 = product of:
      0.040455654 = sum of:
        0.040455654 = product of:
          0.06068348 = sum of:
            0.010754423 = weight(_text_:a in 690) [ClassicSimilarity], result of:
              0.010754423 = score(doc=690,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.20383182 = fieldWeight in 690, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.125 = fieldNorm(doc=690)
            0.04992906 = weight(_text_:h in 690) [ClassicSimilarity], result of:
              0.04992906 = score(doc=690,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.4391927 = fieldWeight in 690, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.125 = fieldNorm(doc=690)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Nachrichten für Dokumentation. 12(1961) H.2, S.65-68
    Type
    a
  5. Dietze, J.: ¬Die semantische Struktur der Thesauruslexik (1988) 0.02
    0.01769935 = product of:
      0.0353987 = sum of:
        0.0353987 = product of:
          0.053098045 = sum of:
            0.009410121 = weight(_text_:a in 6051) [ClassicSimilarity], result of:
              0.009410121 = score(doc=6051,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.17835285 = fieldWeight in 6051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6051)
            0.043687925 = weight(_text_:h in 6051) [ClassicSimilarity], result of:
              0.043687925 = score(doc=6051,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.38429362 = fieldWeight in 6051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6051)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle-Wittenberg: Gesellschafts- und sprachwissenschaftliche Reihe. 37(1988) H.6, S.120-123
    Type
    a
  6. Dextre Clarke, S.G.: Thesaural relationships (2001) 0.02
    0.017602425 = product of:
      0.03520485 = sum of:
        0.03520485 = product of:
          0.05280727 = sum of:
            0.009410121 = weight(_text_:a in 1149) [ClassicSimilarity], result of:
              0.009410121 = score(doc=1149,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.17835285 = fieldWeight in 1149, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1149)
            0.04339715 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.04339715 = score(doc=1149,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.2708308 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1149)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    A thesaurus in the controlled vocabulary environment is a tool designed to support effective infonnation retrieval (IR) by guiding indexers and searchers consistently to choose the same terms for expressing a given concept or combination of concepts. Terms in the thesaurus are linked by relationships of three well-known types: equivalence, hierarchical, and associative. The functions and properties of these three basic types and some subcategories are described, as well as some additional relationship types conunonly found in thesauri. Progressive automation of IR processes and the capability for simultaneous searching of vast networked resources are creating some pressures for change in the categorization and consistency of relationships.
    Date
    22. 9.2007 15:45:57
    Type
    a
  7. Degez, D.: Compatibilité des langages d'indexation mariage, cohabitation ou fusion? : Quelques examples concrèts (1998) 0.02
    0.01603407 = product of:
      0.03206814 = sum of:
        0.03206814 = product of:
          0.04810221 = sum of:
            0.0047050603 = weight(_text_:a in 2245) [ClassicSimilarity], result of:
              0.0047050603 = score(doc=2245,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.089176424 = fieldWeight in 2245, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2245)
            0.04339715 = weight(_text_:22 in 2245) [ClassicSimilarity], result of:
              0.04339715 = score(doc=2245,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.2708308 = fieldWeight in 2245, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2245)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Date
    1. 8.1996 22:01:00
    Type
    a
  8. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2010) 0.02
    0.01603407 = product of:
      0.03206814 = sum of:
        0.03206814 = product of:
          0.04810221 = sum of:
            0.0047050603 = weight(_text_:a in 4792) [ClassicSimilarity], result of:
              0.0047050603 = score(doc=4792,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.089176424 = fieldWeight in 4792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4792)
            0.04339715 = weight(_text_:22 in 4792) [ClassicSimilarity], result of:
              0.04339715 = score(doc=4792,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.2708308 = fieldWeight in 4792, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4792)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
    Type
    a
  9. Maniez, J.: Fusion de banques de donnees documentaires at compatibilite des languages d'indexation (1997) 0.02
    0.015087794 = product of:
      0.030175587 = sum of:
        0.030175587 = product of:
          0.04526338 = sum of:
            0.008065818 = weight(_text_:a in 2246) [ClassicSimilarity], result of:
              0.008065818 = score(doc=2246,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.15287387 = fieldWeight in 2246, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2246)
            0.03719756 = weight(_text_:22 in 2246) [ClassicSimilarity], result of:
              0.03719756 = score(doc=2246,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.23214069 = fieldWeight in 2246, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2246)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Discusses the apparently unattainable goal of compatibility of information languages. While controlled languages can improve retrieval performance within a single system, they make cooperation across different systems more difficult. The Internet and downloading accentuate this adverse outcome and the acceleration of data exchange aggravates the problem of compatibility. Defines this familiar concept and demonstrates that coherence is just as necessary as it was for indexing languages, the proliferation of which has created confusion in grouped data banks. Describes 2 types of potential solutions, similar to those applied to automatic translation of natural languages: - harmonizing the information languages themselves, both difficult and expensive, or, the more flexible solution involving automatic harmonization of indexing formulae based on pre established concordance tables. However, structural incompatibilities between post coordinated languages and classifications may lead any harmonization tools up a blind alley, while the paths of a universal concordance model are rare and narrow
    Date
    1. 8.1996 22:01:00
    Type
    a
  10. Winograd, T.: Software für Sprachverarbeitung (1984) 0.01
    0.012642393 = product of:
      0.025284786 = sum of:
        0.025284786 = product of:
          0.037927177 = sum of:
            0.0067215143 = weight(_text_:a in 1687) [ClassicSimilarity], result of:
              0.0067215143 = score(doc=1687,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.12739488 = fieldWeight in 1687, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1687)
            0.031205663 = weight(_text_:h in 1687) [ClassicSimilarity], result of:
              0.031205663 = score(doc=1687,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.27449545 = fieldWeight in 1687, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1687)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Spektrum der Wissenschaft. 1984, H.11, S.88-102
    Type
    a
  11. Jia, J.: From data to knowledge : the relationships between vocabularies, linked data and knowledge graphs (2021) 0.01
    0.01257316 = product of:
      0.02514632 = sum of:
        0.02514632 = product of:
          0.03771948 = sum of:
            0.0067215143 = weight(_text_:a in 106) [ClassicSimilarity], result of:
              0.0067215143 = score(doc=106,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.12739488 = fieldWeight in 106, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=106)
            0.030997967 = weight(_text_:22 in 106) [ClassicSimilarity], result of:
              0.030997967 = score(doc=106,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19345059 = fieldWeight in 106, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=106)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Purpose The purpose of this paper is to identify the concepts, component parts and relationships between vocabularies, linked data and knowledge graphs (KGs) from the perspectives of data and knowledge transitions. Design/methodology/approach This paper uses conceptual analysis methods. This study focuses on distinguishing concepts and analyzing composition and intercorrelations to explore data and knowledge transitions. Findings Vocabularies are the cornerstone for accurately building understanding of the meaning of data. Vocabularies provide for a data-sharing model and play an important role in supporting the semantic expression of linked data and defining the schema layer; they are also used for entity recognition, alignment and linkage for KGs. KGs, which consist of a schema layer and a data layer, are presented as cubes that organically combine vocabularies, linked data and big data. Originality/value This paper first describes the composition of vocabularies, linked data and KGs. More importantly, this paper innovatively analyzes and summarizes the interrelatedness of these factors, which comes from frequent interactions between data and knowledge. The three factors empower each other and can ultimately empower the Semantic Web.
    Date
    22. 1.2021 14:24:32
    Type
    a
  12. Busch, A.: Terminologiemanagement : erfolgreicher Wissenstransfer durch Concept-Maps und die Überlegungen in DGI-AKTS (2021) 0.01
    0.010856352 = product of:
      0.021712704 = sum of:
        0.021712704 = product of:
          0.032569055 = sum of:
            0.007604526 = weight(_text_:a in 422) [ClassicSimilarity], result of:
              0.007604526 = score(doc=422,freq=4.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.14413087 = fieldWeight in 422, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=422)
            0.02496453 = weight(_text_:h in 422) [ClassicSimilarity], result of:
              0.02496453 = score(doc=422,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.21959636 = fieldWeight in 422, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0625 = fieldNorm(doc=422)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Information - Wissenschaft und Praxis. 72(2021) H.4, S.185-193
    Type
    a
  13. Mooers, C.N.: ¬The indexing language of an information retrieval system (1985) 0.01
    0.010166979 = product of:
      0.020333959 = sum of:
        0.020333959 = product of:
          0.030500937 = sum of:
            0.008802362 = weight(_text_:a in 3644) [ClassicSimilarity], result of:
              0.008802362 = score(doc=3644,freq=28.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.16683382 = fieldWeight in 3644, product of:
                  5.2915025 = tf(freq=28.0), with freq of:
                    28.0 = termFreq=28.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3644)
            0.021698575 = weight(_text_:22 in 3644) [ClassicSimilarity], result of:
              0.021698575 = score(doc=3644,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.1354154 = fieldWeight in 3644, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3644)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Calvin Mooers' work toward the resolution of the problem of ambiguity in indexing went unrecognized for years. At the time he introduced the "descriptor" - a term with a very distinct meaning-indexers were, for the most part, taking index terms directly from the document, without either rationalizing them with context or normalizing them with some kind of classification. It is ironic that Mooers' term came to be attached to the popular but unsophisticated indexing methods which he was trying to root out. Simply expressed, what Mooers did was to take the dictionary definitions of terms and redefine them so clearly that they could not be used in any context except that provided by the new definition. He did, at great pains, construct such meanings for over four hundred words; disambiguation and specificity were sought after and found for these words. He proposed that all indexers adopt this method so that when the index supplied a term, it also supplied the exact meaning for that term as used in the indexed document. The same term used differently in another document would be defined differently and possibly renamed to avoid ambiguity. The disambiguation was achieved by using unabridged dictionaries and other sources of defining terminology. In practice, this tends to produce circularity in definition, that is, word A refers to word B which refers to word C which refers to word A. It was necessary, therefore, to break this chain by creating a new, definitive meaning for each word. Eventually, means such as those used by Austin (q.v.) for PRECIS achieved the same purpose, but by much more complex means than just creating a unique definition of each term. Mooers, however, was probably the first to realize how confusing undefined terminology could be. Early automatic indexers dealt with distinct disciplines and, as long as they did not stray beyond disciplinary boundaries, a quick and dirty keyword approach was satisfactory. The trouble came when attempts were made to make a combined index for two or more distinct disciplines. A number of processes have since been developed, mostly involving tagging of some kind or use of strings. Mooers' solution has rarely been considered seriously and probably would be extremely difficult to apply now because of so much interdisciplinarity. But for a specific, weIl defined field, it is still weIl worth considering. Mooers received training in mathematics and physics from the University of Minnesota and the Massachusetts Institute of Technology. He was the founder of Zator Company, which developed and marketed a coded card information retrieval system, and of Rockford Research, Inc., which engages in research in information science. He is the inventor of the TRAC computer language.
    Footnote
    Original in: Information retrieval today: papers presented at an Institute conducted by the Library School and the Center for Continuation Study, University of Minnesota, Sept. 19-22, 1962. Ed. by Wesley Simonton. Minneapolis, Minn.: The Center, 1963. S.21-36.
    Source
    Theory of subject analysis: a sourcebook. Ed.: L.M. Chan, et al
    Type
    a
  14. Compatibility and integration of order systems : Research Seminar Proceedings of the TIP/ISKO Meeting, Warsaw, 13-15 September 1995 (1996) 0.01
    0.010099293 = product of:
      0.020198585 = sum of:
        0.020198585 = product of:
          0.030297877 = sum of:
            0.008232141 = weight(_text_:a in 6050) [ClassicSimilarity], result of:
              0.008232141 = score(doc=6050,freq=12.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.15602624 = fieldWeight in 6050, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6050)
            0.022065736 = weight(_text_:h in 6050) [ClassicSimilarity], result of:
              0.022065736 = score(doc=6050,freq=4.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.1940976 = fieldWeight in 6050, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6050)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Content
    Enthält die Beiträge: SCHMITZ-ESSER, W.: Language of general communication and concept compatibility; RIESTHUIS, G.: Theory of compatibility of information languages; DAHLBERG, I.: The compatibility guidelines - a re-evaluation; SOERGEL, D.: Data structure and software support for integrated thesauri; MURASZKIEWICZ, M., H. RYBINSKI u. W. STRUK: Software problems of merging multilingual thesauri; CHMIELEWSKA-GORCZYCA, E.: Compatibility of indexing tools in multidatabase environment; NEGRINI, G.: Towards structural compatibility between concept systems; SCIBOR, E.: Some remarks on the establishment of concordances between a universal classification system and an interdisciplinary thesaurus; HOPPE, S.: The UMLS - a model for knowledge integration in a subject field; DEXTRE-CLARKE, S.: Integrating thesauri in the agricultural sciences; ROULIN, C.: Bringing multilingual thesauri together: a feasibility study; ZIMMERMANN, H.: Conception and application possibilities of classification concordances in an OPAC environment; SOSINSKA-KALATA, B.: The Universal Decimal Classification as an international standard for knowledge organization in bibliographic databases and library catalogues; WOZNIAK, J. u. T. GLOWACKA: KABA Subject Authority File - an example of an integrated Polish-French-English subject headings system; BABIK, W.: Terminology as a level for the compatibility of indexing languages - some remarks; STANCIKOVA, P.: International integrated database systems linked to multilingual thesauri covering the field of environment and agriculture; SAMEK, T.: Indexing languages integration and the EUROVOC Thesaurus in the Czech Republic; SIWEK, K.: Compatibility discrepancies between Polish and foreign databases; GLINSKI, W. u. M. MURASZKIEWICZ: An intelligent front-end processor for accessing information systems
  15. Peters, I.; Weller. K.: Paradigmatic and syntagmatic relations in knowledge organization systems (2008) 0.01
    0.009997789 = product of:
      0.019995578 = sum of:
        0.019995578 = product of:
          0.029993366 = sum of:
            0.008149404 = weight(_text_:a in 1593) [ClassicSimilarity], result of:
              0.008149404 = score(doc=1593,freq=6.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.1544581 = fieldWeight in 1593, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1593)
            0.021843962 = weight(_text_:h in 1593) [ClassicSimilarity], result of:
              0.021843962 = score(doc=1593,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19214681 = fieldWeight in 1593, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1593)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Classical knowledge representation methods have been successfully working for years with established - but in a way restricted and vague - relations such as synonymy, hierarchy (meronymy, hyponymy) and unspecified associations. Recent developments like ontologies and folksonomies show new forms of collaboration, indexing and knowledge representation and encourage the reconsideration of standard knowledge relationships for practical use. In a summarizing overview we show which relations are currently used in knowledge organization systems (controlled vocabularies, ontologies and folksonomies) and which relations are expressed explicitly or which may be inherently hidden in them.
    Source
    Information - Wissenschaft und Praxis. 59(2008) H.2, S.100-107
    Type
    a
  16. Tudhope, D.; Alani, H.; Jones, C.: Augmenting thesaurus relationships : possibilities for retrieval (2001) 0.01
    0.007944992 = product of:
      0.015889984 = sum of:
        0.015889984 = product of:
          0.023834974 = sum of:
            0.008232141 = weight(_text_:a in 1520) [ClassicSimilarity], result of:
              0.008232141 = score(doc=1520,freq=12.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.15602624 = fieldWeight in 1520, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1520)
            0.015602832 = weight(_text_:h in 1520) [ClassicSimilarity], result of:
              0.015602832 = score(doc=1520,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.13724773 = fieldWeight in 1520, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1520)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    This paper discusses issues concerning the augmentation of thesaurus relationships, in light of new application possibilities for retrieval. We first discuss a case study that explored the retrieval potential of an augmented set of thesaurus relationships by specialising standard relationships into richer subtypes, in particular hierarchical geographical containment and the associative relationship. We then locate this work in a broader context by reviewing various attempts to build taxonomies of thesaurus relationships, and conclude by discussing the feasibility of hierarchically augmenting the core set of thesaurus relationships, particularly the associative relationship. We discuss the possibility of enriching the specification and semantics of Related Term (RT relationships), while maintaining compatibility with traditional thesauri via a limited hierarchical extension of the associative (and hierarchical) relationships. This would be facilitated by distinguishing the type of term from the (sub)type of relationship and explicitly specifying semantic categories for terms following a faceted approach. We first illustrate how hierarchical spatial relationships can be used to provide more flexible retrieval for queries incorporating place names in applications employing online gazetteers and geographical thesauri. We then employ a set of experimental scenarios to investigate key issues affecting use of the associative (RT) thesaurus relationships in semantic distance measures. Previous work has noted the potential of RTs in thesaurus search aids but also the problem of uncontrolled expansion of query term sets. Results presented in this paper suggest the potential for taking account of the hierarchical context of an RT link and specialisations of the RT relationship
    Type
    a
  17. Dietze, J.: Informationsrecherchesprache und deren Lexik : Bemerkungen zur Terminologiediskussion (1980) 0.01
    0.007585435 = product of:
      0.01517087 = sum of:
        0.01517087 = product of:
          0.022756305 = sum of:
            0.004032909 = weight(_text_:a in 32) [ClassicSimilarity], result of:
              0.004032909 = score(doc=32,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.07643694 = fieldWeight in 32, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=32)
            0.018723397 = weight(_text_:h in 32) [ClassicSimilarity], result of:
              0.018723397 = score(doc=32,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.16469726 = fieldWeight in 32, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=32)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Zentralblatt für Bibliothekswesen. 94(1980) H.10, S.460-464
    Type
    a
  18. Engerer, V.: Thesauri, Terminologien, Lexika, Fachsprachen : Kontrolle, physische Verortung und das Prinzip der Syntagmatisierung von Vokabularen (2014) 0.01
    0.007585435 = product of:
      0.01517087 = sum of:
        0.01517087 = product of:
          0.022756305 = sum of:
            0.004032909 = weight(_text_:a in 3644) [ClassicSimilarity], result of:
              0.004032909 = score(doc=3644,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.07643694 = fieldWeight in 3644, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3644)
            0.018723397 = weight(_text_:h in 3644) [ClassicSimilarity], result of:
              0.018723397 = score(doc=3644,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.16469726 = fieldWeight in 3644, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3644)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Information - Wissenschaft und Praxis. 65(2014) H.2, S.99-108
    Type
    a
  19. ALA / Subcommittee on Subject Relationships/Reference Structures: Final Report to the ALCTS/CCS Subject Analysis Committee (1997) 0.01
    0.0058586476 = product of:
      0.011717295 = sum of:
        0.011717295 = product of:
          0.017575942 = sum of:
            0.0066539603 = weight(_text_:a in 1800) [ClassicSimilarity], result of:
              0.0066539603 = score(doc=1800,freq=16.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.12611452 = fieldWeight in 1800, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1800)
            0.010921981 = weight(_text_:h in 1800) [ClassicSimilarity], result of:
              0.010921981 = score(doc=1800,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.096073404 = fieldWeight in 1800, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1800)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    The SAC Subcommittee on Subject Relationships/Reference Structures was authorized at the 1995 Midwinter Meeting and appointed shortly before Annual Conference. Its creation was one result of a discussion of how (and why) to promote the display and use of broader-term subject heading references, and its charge reads as follows: To investigate: (1) the kinds of relationships that exist between subjects, the display of which are likely to be useful to catalog users; (2) how these relationships are or could be recorded in authorities and classification formats; (3) options for how these relationships should be presented to users of online and print catalogs, indexes, lists, etc. By the summer 1996 Annual Conference, make some recommendations to SAC about how to disseminate the information and/or implement changes. At that time assess the need for additional time to investigate these issues. The Subcommittee's work on each of the imperatives in the charge was summarized in a report issued at the 1996 Annual Conference (Appendix A). Highlights of this work included the development of a taxonomy of 165 subject relationships; a demonstration that, using existing MARC coding, catalog systems could be programmed to generate references they do not currently support; and an examination of reference displays in several CD-ROM database products. Since that time, work has continued on identifying term relationships and display options; on tracking research, discussion, and implementation of subject relationships in information systems; and on compiling a list of further research needs.
    Content
    Enthält: Appendix A: Subcommittee on Subject Relationships/Reference Structures - REPORT TO THE ALCTS/CCS SUBJECT ANALYSIS COMMITTEE - July 1996 Appendix B (part 1): Taxonomy of Subject Relationships. Compiled by Dee Michel with the assistance of Pat Kuhr - June 1996 draft (alphabetical display) (Separat in: http://web2.ala.org/ala/alctscontent/CCS/committees/subjectanalysis/subjectrelations/msrscu2.pdf) Appendix B (part 2): Taxonomy of Subject Relationships. Compiled by Dee Michel with the assistance of Pat Kuhr - June 1996 draft (hierarchical display) Appendix C: Checklist of Candidate Subject Relationships for Information Retrieval. Compiled by Dee Michel, Pat Kuhr, and Jane Greenberg; edited by Greg Wool - June 1997 Appendix D: Review of Reference Displays in Selected CD-ROM Abstracts and Indexes by Harriette Hemmasi and Steven Riel Appendix E: Analysis of Relationships in Six LC Subject Authority Records by Harriette Hemmasi and Gary Strawn Appendix F: Report of a Preliminary Survey of Subject Referencing in OPACs by Gregory Wool Appendix G: LC Subject Referencing in OPACs--Why Bother? by Gregory Wool Appendix H: Research Needs on Subject Relationships and Reference Structures in Information Access compiled by Jane Greenberg and Steven Riel with contributions from Dee Michel and others edited by Gregory Wool Appendix I: Bibliography on Subject Relationships compiled mostly by Dee Michel with additional contributions from Jane Greenberg, Steven Riel, and Gregory Wool
  20. Neet, H.: Assoziationsrelationen in Dokumentationslexika für die verbale Sacherschließung (1984) 0.00
    0.0041607553 = product of:
      0.008321511 = sum of:
        0.008321511 = product of:
          0.02496453 = sum of:
            0.02496453 = weight(_text_:h in 1254) [ClassicSimilarity], result of:
              0.02496453 = score(doc=1254,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.21959636 = fieldWeight in 1254, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1254)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    

Languages

  • e 81
  • d 21
  • f 2
  • ja 1
  • More… Less…

Types

  • a 96
  • s 5
  • m 4
  • el 3
  • r 2
  • x 1
  • More… Less…

Classifications