Search (61 results, page 2 of 4)

  • × author_ss:"Bornmann, L."
  1. Bornmann, L.: How well does a university perform in comparison with its peers? : The use of odds, and odds ratios, for the comparison of institutional citation impact using the Leiden Rankings (2015) 0.00
    0.0023678814 = product of:
      0.0047357627 = sum of:
        0.0047357627 = product of:
          0.009471525 = sum of:
            0.009471525 = weight(_text_:a in 2340) [ClassicSimilarity], result of:
              0.009471525 = score(doc=2340,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.17835285 = fieldWeight in 2340, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2340)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study presents the calculation of odds, and odds ratios, for the comparison of the citation impact of universities in the Leiden Ranking. Odds and odds ratios can be used to measure the performance difference between a selected university and competing institutions, or the average of selected competitors, in a relatively simple but clear way.
    Type
    a
  2. Bornmann, L.: What is societal impact of research and how can it be assessed? : a literature survey (2013) 0.00
    0.002269176 = product of:
      0.004538352 = sum of:
        0.004538352 = product of:
          0.009076704 = sum of:
            0.009076704 = weight(_text_:a in 606) [ClassicSimilarity], result of:
              0.009076704 = score(doc=606,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1709182 = fieldWeight in 606, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=606)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Since the 1990s, the scope of research evaluations becomes broader as the societal products (outputs), societal use (societal references), and societal benefits (changes in society) of research come into scope. Society can reap the benefits of successful research studies only if the results are converted into marketable and consumable products (e.g., medicaments, diagnostic tools, machines, and devices) or services. A series of different names have been introduced which refer to the societal impact of research: third stream activities, societal benefits, societal quality, usefulness, public values, knowledge transfer, and societal relevance. What most of these names are concerned with is the assessment of social, cultural, environmental, and economic returns (impact and effects) from results (research output) or products (research outcome) of publicly funded research. This review intends to present existing research on and practices employed in the assessment of societal impact in the form of a literature survey. The objective is for this review to serve as a basis for the development of robust and reliable methods of societal impact measurement.
    Type
    a
  3. Bornmann, L.; Daniel, H.-D.: Multiple publication on a single research study: does it pay? : The influence of number of research articles on total citation counts in biomedicine (2007) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 444) [ClassicSimilarity], result of:
              0.00894975 = score(doc=444,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 444, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=444)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Scientists may seek to report a single definable body of research in more than one publication, that is, in repeated reports of the same work or in fractional reports, in order to disseminate their research as widely as possible in the scientific community. Up to now, however, it has not been examined whether this strategy of "multiple publication" in fact leads to greater reception of the research. In the present study, we investigate the influence of number of articles reporting the results of a single study on reception in the scientific community (total citation counts of an article on a single study). Our data set consists of 96 applicants for a research fellowship from the Boehringer Ingelheim Fonds (BIF), an international foundation for the promotion of basic research in biomedicine. The applicants reported to us all articles that they had published within the framework of their doctoral research projects. On this single project, the applicants had published from 1 to 16 articles (M = 4; Mdn = 3). The results of a regression model with an interaction term show that the practice of multiple publication of research study results does in fact lead to greater reception of the research (higher total citation counts) in the scientific community. However, reception is dependent upon length of article: the longer the article, the more total citation counts increase with the number of articles. Thus, it pays for scientists to practice multiple publication of study results in the form of sizable reports.
    Type
    a
  4. Bornmann, L.; Daniel, H.D.: What do citation counts measure? : a review of studies on citing behavior (2008) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 1729) [ClassicSimilarity], result of:
              0.00894975 = score(doc=1729,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 1729, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1729)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The purpose of this paper is to present a narrative review of studies on the citing behavior of scientists, covering mainly research published in the last 15 years. Based on the results of these studies, the paper seeks to answer the question of the extent to which scientists are motivated to cite a publication not only to acknowledge intellectual and cognitive influences of scientific peers, but also for other, possibly non-scientific, reasons. Design/methodology/approach - The review covers research published from the early 1960s up to mid-2005 (approximately 30 studies on citing behavior-reporting results in about 40 publications). Findings - The general tendency of the results of the empirical studies makes it clear that citing behavior is not motivated solely by the wish to acknowledge intellectual and cognitive influences of colleague scientists, since the individual studies reveal also other, in part non-scientific, factors that play a part in the decision to cite. However, the results of the studies must also be deemed scarcely reliable: the studies vary widely in design, and their results can hardly be replicated. Many of the studies have methodological weaknesses. Furthermore, there is evidence that the different motivations of citers are "not so different or 'randomly given' to such an extent that the phenomenon of citation would lose its role as a reliable measure of impact". Originality/value - Given the increasing importance of evaluative bibliometrics in the world of scholarship, the question "What do citation counts measure?" is a particularly relevant and topical issue.
    Type
    a
  5. Bornmann, L.; Thor, A.; Marx, W.; Schier, H.: ¬The application of bibliometrics to research evaluation in the humanities and social sciences : an exploratory study using normalized Google Scholar data for the publications of a research institute (2016) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 3160) [ClassicSimilarity], result of:
              0.00894975 = score(doc=3160,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 3160, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3160)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In the humanities and social sciences, bibliometric methods for the assessment of research performance are (so far) less common. This study uses a concrete example in an attempt to evaluate a research institute from the area of social sciences and humanities with the help of data from Google Scholar (GS). In order to use GS for a bibliometric study, we developed procedures for the normalization of citation impact, building on the procedures of classical bibliometrics. In order to test the convergent validity of the normalized citation impact scores, we calculated normalized scores for a subset of the publications based on data from the Web of Science (WoS) and Scopus. Even if scores calculated with the help of GS and the WoS/Scopus are not identical for the different publication types (considered here), they are so similar that they result in the same assessment of the institute investigated in this study: For example, the institute's papers whose journals are covered in the WoS are cited at about an average rate (compared with the other papers in the journals).
    Type
    a
  6. Bornmann, L.; Mutz, R.; Daniel, H.-D.: Are there better indices for evaluation purposes than the h index? : a comparison of nine different variants of the h index using data from biomedicine (2008) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 1608) [ClassicSimilarity], result of:
              0.008285859 = score(doc=1608,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 1608, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1608)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this study, we examined empirical results on the h index and its most important variants in order to determine whether the variants developed are associated with an incremental contribution for evaluation purposes. The results of a factor analysis using bibliographic data on postdoctoral researchers in biomedicine indicate that regarding the h index and its variants, we are dealing with two types of indices that load on one factor each. One type describes the most productive core of a scientist's output and gives the number of papers in that core. The other type of indices describes the impact of the papers in the core. Because an index for evaluative purposes is a useful yardstick for comparison among scientists if the index corresponds strongly with peer assessments, we calculated a logistic regression analysis with the two factors resulting from the factor analysis as independent variables and peer assessment of the postdoctoral researchers as the dependent variable. The results of the regression analysis show that peer assessments can be predicted better using the factor impact of the productive core than using the factor quantity of the productive core.
    Type
    a
  7. Marx, W.; Bornmann, L.; Barth, A.; Leydesdorff, L.: Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS) (2014) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 1238) [ClassicSimilarity], result of:
              0.008202582 = score(doc=1238,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 1238, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1238)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We introduce the quantitative method named "Reference Publication Year Spectroscopy" (RPYS). With this method one can determine the historical roots of research fields and quantify their impact on current research. RPYS is based on the analysis of the frequency with which references are cited in the publications of a specific research field in terms of the publication years of these cited references. The origins show up in the form of more or less pronounced peaks mostly caused by individual publications that are cited particularly frequently. In this study, we use research on graphene and on solar cells to illustrate how RPYS functions, and what results it can deliver.
    Type
    a
  8. Bornmann, L.; Haunschild, R.: Relative Citation Ratio (RCR) : an empirical attempt to study a new field-normalized bibliometric indicator (2017) 0.00
    0.0020506454 = product of:
      0.004101291 = sum of:
        0.004101291 = product of:
          0.008202582 = sum of:
            0.008202582 = weight(_text_:a in 3541) [ClassicSimilarity], result of:
              0.008202582 = score(doc=3541,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1544581 = fieldWeight in 3541, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3541)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Hutchins, Yuan, Anderson, and Santangelo (2015) proposed the Relative Citation Ratio (RCR) as a new field-normalized impact indicator. This study investigates the RCR by correlating it on the level of single publications with established field-normalized indicators and assessments of the publications by peers. We find that the RCR correlates highly with established field-normalized indicators, but the correlation between RCR and peer assessments is only low to medium.
    Type
    a
  9. Bornmann, L.; Moya Anegón, F. de; Mutz, R.: Do universities or research institutions with a specific subject profile have an advantage or a disadvantage in institutional rankings? (2013) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 1109) [ClassicSimilarity], result of:
              0.008118451 = score(doc=1109,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 1109, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1109)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Using data compiled for the SCImago Institutions Ranking, we look at whether the subject area type an institution (university or research-focused institution) belongs to (in terms of the fields researched) has an influence on its ranking position. We used latent class analysis to categorize institutions based on their publications in certain subject areas. Even though this categorization does not relate directly to scientific performance, our results show that it exercises an important influence on the outcome of a performance measurement: Certain subject area types of institutions have an advantage in the ranking positions when compared with others. This advantage manifests itself not only when performance is measured with an indicator that is not field-normalized but also for indicators that are field-normalized.
    Type
    a
  10. Bornmann, L.: On the function of university rankings (2014) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 1188) [ClassicSimilarity], result of:
              0.008118451 = score(doc=1188,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 1188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1188)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  11. Bornmann, L.: ¬The reception of publications by scientists in the early days of modern science (2014) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 1509) [ClassicSimilarity], result of:
              0.008118451 = score(doc=1509,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 1509, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1509)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  12. Bornmann, L.: Interrater reliability and convergent validity of F1000Prime peer review (2015) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 2328) [ClassicSimilarity], result of:
              0.008118451 = score(doc=2328,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 2328, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2328)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Peer review is the backbone of modern science. F1000Prime is a postpublication peer review system of the biomedical literature (papers from medical and biological journals). This study is concerned with the interrater reliability and convergent validity of the peer recommendations formulated in the F1000Prime peer review system. The study is based on about 100,000 papers with recommendations from faculty members. Even if intersubjectivity plays a fundamental role in science, the analyses of the reliability of the F1000Prime peer review system show a rather low level of agreement between faculty members. This result is in agreement with most other studies that have been published on the journal peer review system. Logistic regression models are used to investigate the convergent validity of the F1000Prime peer review system. As the results show, the proportion of highly cited papers among those selected by the faculty members is significantly higher than expected. In addition, better recommendation scores are also associated with higher performing papers.
    Type
    a
  13. Bornmann, L.; Bauer, J.; Haunschild, R.: Distribution of women and men among highly cited scientists (2015) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 2349) [ClassicSimilarity], result of:
              0.008118451 = score(doc=2349,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 2349, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=2349)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  14. Besselaar, P. van den; Wagner, C,; Bornmann, L.: Correct assumptions? (2016) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 3020) [ClassicSimilarity], result of:
              0.008118451 = score(doc=3020,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 3020, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3020)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  15. Leydesdorff, L.; Wagner, C,; Bornmann, L.: Replicability and the public/private divide (2016) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 3023) [ClassicSimilarity], result of:
              0.008118451 = score(doc=3023,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 3023, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3023)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  16. Bornmann, L.; Haunschild, R.: Overlay maps based on Mendeley data : the use of altmetrics for readership networks (2016) 0.00
    0.0020296127 = product of:
      0.0040592253 = sum of:
        0.0040592253 = product of:
          0.008118451 = sum of:
            0.008118451 = weight(_text_:a in 3230) [ClassicSimilarity], result of:
              0.008118451 = score(doc=3230,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15287387 = fieldWeight in 3230, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3230)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Visualization of scientific results using networks has become popular in scientometric research. We provide base maps for Mendeley reader count data using the publication year 2012 from the Web of Science data. Example networks are shown and explained. The reader can use our base maps to visualize other results with the VOSViewer. The proposed overlay maps are able to show the impact of publications in terms of readership data. The advantage of using our base maps is that it is not necessary for the user to produce a network based on all data (e.g., from 1 year), but can collect the Mendeley data for a single institution (or journals, topics) and can match them with our already produced information. Generation of such large-scale networks is still a demanding task despite the available computer power and digital data availability. Therefore, it is very useful to have base maps and create the network with the overlay technique.
    Type
    a
  17. Bornmann, L.; Daniel, H.-D.: Selecting manuscripts for a high-impact journal through peer review : a citation analysis of communications that were accepted by Angewandte Chemie International Edition, or rejected but published elsewhere (2008) 0.00
    0.001913537 = product of:
      0.003827074 = sum of:
        0.003827074 = product of:
          0.007654148 = sum of:
            0.007654148 = weight(_text_:a in 2381) [ClassicSimilarity], result of:
              0.007654148 = score(doc=2381,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14413087 = fieldWeight in 2381, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2381)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    All journals that use peer review have to deal with the following question: Does the peer review system fulfill its declared objective to select the best scientific work? We investigated the journal peer-review process at Angewandte Chemie International Edition (AC-IE), one of the prime chemistry journals worldwide, and conducted a citation analysis for Communications that were accepted by the journal (n = 878) or rejected but published elsewhere (n = 959). The results of negative binomial-regression models show that holding all other model variables constant, being accepted by AC-IE increases the expected number of citations by up to 50%. A comparison of average citation counts (with 95% confidence intervals) of accepted and rejected (but published elsewhere) Communications with international scientific reference standards was undertaken. As reference standards, (a) mean citation counts for the journal set provided by Thomson Reuters corresponding to the field chemistry and (b) specific reference standards that refer to the subject areas of Chemical Abstracts were used. When compared to reference standards, the mean impact on chemical research is for the most part far above average not only for accepted Communications but also for rejected (but published elsewhere) Communications. However, average and below-average scientific impact is to be expected significantly less frequently for accepted Communications than for rejected Communications. All in all, the results of this study confirm that peer review at AC-IE is able to select the best scientific work with the highest impact on chemical research.
    Content
    Vgl. auch: Erratum Re: Selecting manuscripts for a high-impact journal through peer review: A citation analysis of communications that were accepted by Agewandte Chemie International Edition, or rejected but published elsewhere. In: Journal of the American Society for Information Science and Technology 59(2008) no.12, S.2037-2038.
    Type
    a
  18. Bornmann, L.; Schier, H.; Marx, W.; Daniel, H.-D.: Is interactive open access publishing able to identify high-impact submissions? : a study on the predictive validity of Atmospheric Chemistry and Physics by using percentile rank classes (2011) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 4132) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=4132,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 4132, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4132)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In a comprehensive research project, we investigated the predictive validity of selection decisions and reviewers' ratings at the open access journal Atmospheric Chemistry and Physics (ACP). ACP is a high-impact journal publishing papers on the Earth's atmosphere and the underlying chemical and physical processes. Scientific journals have to deal with the following question concerning the predictive validity: Are in fact the "best" scientific works selected from the manuscripts submitted? In this study we examined whether selecting the "best" manuscripts means selecting papers that after publication show top citation performance as compared to other papers in this research area. First, we appraised the citation impact of later published manuscripts based on the percentile citedness rank classes of the population distribution (scaling in a specific subfield). Second, we analyzed the association between the decisions (n = 677 accepted or rejected, but published elsewhere manuscripts) or ratings (reviewers' ratings for n = 315 manuscripts), respectively, and the citation impact classes of the manuscripts. The results confirm the predictive validity of the ACP peer review system.
    Type
    a
  19. Ye, F.Y.; Bornmann, L.: "Smart girls" versus "sleeping beauties" in the sciences : the identification of instant and delayed recognition by using the citation angle (2018) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 2160) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=2160,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 2160, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2160)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In recent years, a number of studies have introduced methods for identifying papers with delayed recognition (so called "sleeping beauties," SBs) or have presented single publications as cases of SBs. Most recently, Ke, Ferrara, Radicchi, and Flammini (2015, Proceedings of the National Academy of Sciences of the USA, 112(24), 7426-7431) proposed the so called "beauty coefficient" (denoted as B) to quantify how much a given paper can be considered as a paper with delayed recognition. In this study, the new term smart girl (SG) is suggested to differentiate instant credit or "flashes in the pan" from SBs. Although SG and SB are qualitatively defined, the dynamic citation angle ß is introduced in this study as a simple way for identifying SGs and SBs quantitatively - complementing the beauty coefficient B. The citation angles for all articles from 1980 (n?=?166,870) in natural sciences are calculated for identifying SGs and SBs and their extent. We reveal that about 3% of the articles are typical SGs and about 0.1% typical SBs. The potential advantages of the citation angle approach are explained.
    Type
    a
  20. Bornmann, L.; Ye, A.; Ye, F.: Identifying landmark publications in the long run using field-normalized citation data (2018) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 4196) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=4196,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 4196, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4196)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The purpose of this paper is to propose an approach for identifying landmark papers in the long run. These publications reach a very high level of citation impact and are able to remain on this level across many citing years. In recent years, several studies have been published which deal with the citation history of publications and try to identify landmark publications. Design/methodology/approach In contrast to other studies published hitherto, this study is based on a broad data set with papers published between 1980 and 1990 for identifying the landmark papers. The authors analyzed the citation histories of about five million papers across 25 years. Findings The results of this study reveal that 1,013 papers (less than 0.02 percent) are "outstandingly cited" in the long run. The cluster analyses of the papers show that they received the high impact level very soon after publication and remained on this level over decades. Only a slight impact decline is visible over the years. Originality/value For practical reasons, approaches for identifying landmark papers should be as simple as possible. The approach proposed in this study is based on standard methods in bibliometrics.
    Type
    a