Search (1 results, page 1 of 1)

  • × type_ss:"el"
  • × language_ss:"i"
  1. Cecchini, C.; Zanchetta, C.; Paolo Borin, P.; Xausa, G.: Computational design e sistemi di classificazione per la verifica predittiva delle prestazioni di sistema degli organismi edilizi : Computational design and classification systems to support predictive checking of performance of building systems (2017) 0.01
    0.009725915 = product of:
      0.01945183 = sum of:
        0.01945183 = product of:
          0.03890366 = sum of:
            0.03890366 = weight(_text_:t in 5856) [ClassicSimilarity], result of:
              0.03890366 = score(doc=5856,freq=2.0), product of:
                0.17876579 = queryWeight, product of:
                  3.9394085 = idf(docFreq=2338, maxDocs=44218)
                  0.04537884 = queryNorm
                0.21762364 = fieldWeight in 5856, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9394085 = idf(docFreq=2338, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5856)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The aim of control the economic, social and environmental aspects connected to the construction of a building imposes a systematic approach for which t is necessary to make test models aimed to a coordinate analysis of different and independent performance issues. BIM technology, referring to interoperable informative models, offers a significant operative basis to achieve this necessity. In most of the cases, informative models concentrate on a product-based digital models collection built in a virtual space, more than on the simulation of their relational behaviors. This relation, instead, is the most important aspect of modelling because it marks and characterizes the interactions that can define the building as a system. This study presents the use of standard classification systems as tools for both the activation and validation of an integrated performance-based building process. By referring categories and types of the informative model to the codes of a technological and performance-based classification system, it is possible to link and coordinate functional units and their elements with the indications required by the AEC standards. In this way, progressing with an incremental logic, it is possible to achieve the management of the requirements of the whole building and the monitoring of the fulfilment of design objectives and specific normative guidelines.