Search (23 results, page 1 of 2)

  • × type_ss:"m"
  • × theme_ss:"Wissensrepräsentation"
  1. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.03
    0.028503895 = product of:
      0.05700779 = sum of:
        0.05700779 = sum of:
          0.0040592253 = weight(_text_:a in 3355) [ClassicSimilarity], result of:
            0.0040592253 = score(doc=3355,freq=2.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.07643694 = fieldWeight in 3355, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=3355)
          0.052948564 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
            0.052948564 = score(doc=3355,freq=4.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.32829654 = fieldWeight in 3355, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=3355)
      0.5 = coord(1/2)
    
    Content
    One of a series of three publications influenced by the travelling exhibit Places & Spaces: Mapping Science, curated by the Cyberinfrastructure for Network Science Center at Indiana University. - Additional materials can be found at http://http://scimaps.org/atlas2. Erweitert durch: Börner, Katy. Atlas of Science: Visualizing What We Know.
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  2. Gödert, W.; Hubrich, J.; Nagelschmidt, M.: Semantic knowledge representation for information retrieval (2014) 0.02
    0.021590449 = product of:
      0.043180898 = sum of:
        0.043180898 = sum of:
          0.005740611 = weight(_text_:a in 987) [ClassicSimilarity], result of:
            0.005740611 = score(doc=987,freq=4.0), product of:
              0.053105544 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046056706 = queryNorm
              0.10809815 = fieldWeight in 987, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=987)
          0.037440285 = weight(_text_:22 in 987) [ClassicSimilarity], result of:
            0.037440285 = score(doc=987,freq=2.0), product of:
              0.16128273 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046056706 = queryNorm
              0.23214069 = fieldWeight in 987, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=987)
      0.5 = coord(1/2)
    
    Abstract
    This book covers the basics of semantic web technologies and indexing languages, and describes their contribution to improve languages as a tool for subject queries and knowledge exploration. The book is relevant to information scientists, knowledge workers and indexers. It provides a suitable combination of theoretical foundations and practical applications.
    Date
    23. 7.2017 13:49:22
  3. Frické, M.: Logic and the organization of information (2012) 0.00
    0.0025115174 = product of:
      0.0050230348 = sum of:
        0.0050230348 = product of:
          0.0100460695 = sum of:
            0.0100460695 = weight(_text_:a in 1782) [ClassicSimilarity], result of:
              0.0100460695 = score(doc=1782,freq=36.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18917176 = fieldWeight in 1782, product of:
                  6.0 = tf(freq=36.0), with freq of:
                    36.0 = termFreq=36.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1782)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Logic and the Organization of Information closely examines the historical and contemporary methodologies used to catalogue information objects-books, ebooks, journals, articles, web pages, images, emails, podcasts and more-in the digital era. This book provides an in-depth technical background for digital librarianship, and covers a broad range of theoretical and practical topics including: classification theory, topic annotation, automatic clustering, generalized synonymy and concept indexing, distributed libraries, semantic web ontologies and Simple Knowledge Organization System (SKOS). It also analyzes the challenges facing today's information architects, and outlines a series of techniques for overcoming them. Logic and the Organization of Information is intended for practitioners and professionals working at a design level as a reference book for digital librarianship. Advanced-level students, researchers and academics studying information science, library science, digital libraries and computer science will also find this book invaluable.
    Footnote
    Rez. in: J. Doc. 70(2014) no.4: "Books on the organization of information and knowledge, aimed at a library/information audience, tend to fall into two clear categories. Most are practical and pragmatic, explaining the "how" as much or more than the "why". Some are theoretical, in part or in whole, showing how the practice of classification, indexing, resource description and the like relates to philosophy, logic, and other foundational bases; the books by Langridge (1992) and by Svenonious (2000) are well-known examples this latter kind. To this category certainly belongs a recent book by Martin Frické (2012). The author takes the reader for an extended tour through a variety of aspects of information organization, including classification and taxonomy, alphabetical vocabularies and indexing, cataloguing and FRBR, and aspects of the semantic web. The emphasis throughout is on showing how practice is, or should be, underpinned by formal structures; there is a particular emphasis on first order predicate calculus. The advantages of a greater, and more explicit, use of symbolic logic is a recurring theme of the book. There is a particularly commendable historical dimension, often omitted in texts on this subject. It cannot be said that this book is entirely an easy read, although it is well written with a helpful index, and its arguments are generally well supported by clear and relevant examples. It is thorough and detailed, but thereby seems better geared to the needs of advanced students and researchers than to the practitioners who are suggested as a main market. For graduate students in library/information science and related disciplines, in particular, this will be a valuable resource. I would place it alongside Svenonious' book as the best insight into the theoretical "why" of information organization. It has evoked a good deal of interest, including a set of essay commentaries in Journal of Information Science (Gilchrist et al., 2013). Introducing these, Alan Gilchrist rightly says that Frické deserves a salute for making explicit the fundamental relationship between the ancient discipline of logic and modern information organization. If information science is to continue to develop, and make a contribution to the organization of the information environments of the future, then this book sets the groundwork for the kind of studies which will be needed." (D. Bawden)
  4. Nagao, M.: Knowledge and inference (1990) 0.00
    0.0023919214 = product of:
      0.0047838427 = sum of:
        0.0047838427 = product of:
          0.009567685 = sum of:
            0.009567685 = weight(_text_:a in 3304) [ClassicSimilarity], result of:
              0.009567685 = score(doc=3304,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18016359 = fieldWeight in 3304, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3304)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Knowledge and Inference discusses an important problem for software systems: How do we treat knowledge and ideas on a computer and how do we use inference to solve problems on a computer? The book talks about the problems of knowledge and inference for the purpose of merging artificial intelligence and library science. The book begins by clarifying the concept of ""knowledge"" from many points of view, followed by a chapter on the current state of library science and the place of artificial intelligence in library science. Subsequent chapters cover central topics in the artificial intelligence: search and problem solving, methods of making proofs, and the use of knowledge in looking for a proof. There is also a discussion of how to use the knowledge system. The final chapter describes a popular expert system. It describes tools for building expert systems using an example based on Expert Systems-A Practical Introduction by P. Sell (Macmillian, 1985). This type of software is called an ""expert system shell."" This book was written as a textbook for undergraduate students covering only the basics but explaining as much detail as possible.
  5. Semantic knowledge and semantic representations (1995) 0.00
    0.0021393995 = product of:
      0.004278799 = sum of:
        0.004278799 = product of:
          0.008557598 = sum of:
            0.008557598 = weight(_text_:a in 3568) [ClassicSimilarity], result of:
              0.008557598 = score(doc=3568,freq=20.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.16114321 = fieldWeight in 3568, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3568)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    G. Gainotti, M.C. Silveri, A. Daniele, L. Giustolisi, Neuroanatomical Correlates of Category-specific Semantic Disorders: A Critical Survey. J. S. Snowden, H. L. Griffiths, D. Neary, Autobiographical Experience and Word Meaning. L. Cipolotti, E.K. Warrington, Towards a Unitary Account of Access Dysphasia: A Single Case Study. E. Forde, G.W. Humphreys, Refractory Semantics in Global Aphasia: On Semantic Organisation and the Access-Storage Distinction in Neuropsychology. A. E. Hillis, A. Caramazza, The Compositionality of Lexical Semantic Representations: Clues from Semantic Errors in Object Naming. H.E. Moss, L.K. Tyler, Investigating Semantic Memory Impairments: The Contribution of Semantic Priming. K.R. Laws, S.A. Humber, D.J.C. Ramsey, R.A. McCarthy, Probing Sensory and Associative Semantics for Animals and Objects in Normal Subjects. K.R. Laws, J.J. Evans, J. R. Hodges, R.A. McCarthy, Naming without Knowing and Appearance without Associations: Evidence for Constructive Processes in Semantic Memory? J. Powell, J. Davidoff, Selective Impairments of Object-knowledge in a Case of Acquired Cortical Blindness. J.R. Hodges, N. Graham, K. Patterson, Charting the Progression in Semantic Dementia: Implications for the Organisation of Semantic Memory. E. Funnell, Objects and Properties: A Study of the Breakdown of Semantic Memory. L.J. Tippett, S. McAuliffe, M. J. Farrar, Preservation of Categorical Knowledge in Alzheimer's Disease: A Computational Account. G. W. Humphreys, C. Lamote, T.J. Lloyd-Jones, An Interactive Activation Approach to Object Processing: Effects of Structural Similarity, Name Frequency, and Task in Normality and Pathology.
    Footnote
    This book is also a double special issue of the journal Memory which forms Issues 3 and 4 of Volume 3 (1995).
  6. Chaudhury, S.; Mallik, A.; Ghosh, H.: Multimedia ontology : representation and applications (2016) 0.00
    0.0020714647 = product of:
      0.0041429293 = sum of:
        0.0041429293 = product of:
          0.008285859 = sum of:
            0.008285859 = weight(_text_:a in 2801) [ClassicSimilarity], result of:
              0.008285859 = score(doc=2801,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.15602624 = fieldWeight in 2801, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2801)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The book covers multimedia ontology in heritage preservation with intellectual explorations of various themes of Indian cultural heritage. The result of more than 15 years of collective research, Multimedia Ontology: Representation and Applications provides a theoretical foundation for understanding the nature of media data and the principles involved in its interpretation. The book presents a unified approach to recent advances in multimedia and explains how a multimedia ontology can fill the semantic gap between concepts and the media world. It relays real-life examples of implementations in different domains to illustrate how this gap can be filled. The book contains information that helps with building semantic, content-based search and retrieval engines and also with developing vertical application-specific search applications. It guides you in designing multimedia tools that aid in logical and conceptual organization of large amounts of multimedia data. As a practical demonstration, it showcases multimedia applications in cultural heritage preservation efforts and the creation of virtual museums. The book describes the limitations of existing ontology techniques in semantic multimedia data processing, as well as some open problems in the representations and applications of multimedia ontology. As an antidote, it introduces new ontology representation and reasoning schemes that overcome these limitations. The long, compiled efforts reflected in Multimedia Ontology: Representation and Applications are a signpost for new achievements and developments in efficiency and accessibility in the field.
  7. Stuart, D.: Practical ontologies for information professionals (2016) 0.00
    0.0019633435 = product of:
      0.003926687 = sum of:
        0.003926687 = product of:
          0.007853374 = sum of:
            0.007853374 = weight(_text_:a in 5152) [ClassicSimilarity], result of:
              0.007853374 = score(doc=5152,freq=22.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14788237 = fieldWeight in 5152, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=5152)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Practical Ontologies for Information Professionals provides an accessible introduction and exploration of ontologies and demonstrates their value to information professionals. More data and information is being created than ever before. Ontologies, formal representations of knowledge with rich semantic relationships, have become increasingly important in the context of today's information overload and data deluge. The publishing and sharing of explicit explanations for a wide variety of conceptualizations, in a machine readable format, has the power to both improve information retrieval and discover new knowledge. Information professionals are key contributors to the development of new, and increasingly useful, ontologies. Practical Ontologies for Information Professionals provides an accessible introduction to the following: defining the concept of ontologies and why they are increasingly important to information professionals ontologies and the semantic web existing ontologies, such as RDF, RDFS, SKOS, and OWL2 adopting and building ontologies, showing how to avoid repetition of work and how to build a simple ontology interrogating ontologies for reuse the future of ontologies and the role of the information professional in their development and use. This book will be useful reading for information professionals in libraries and other cultural heritage institutions who work with digitalization projects, cataloguing and classification and information retrieval. It will also be useful to LIS students who are new to the field.
    Content
    C H A P T E R 1 What is an ontology?; Introduction; The data deluge and information overload; Defining terms; Knowledge organization systems and ontologies; Ontologies, metadata and linked data; What can an ontology do?; Ontologies and information professionals; Alternatives to ontologies; The aims of this book; The structure of this book; C H A P T E R 2 Ontologies and the semantic web; Introduction; The semantic web and linked data; Resource Description Framework (RDF); Classes, subclasses and properties; The semantic web stack; Embedded RDF; Alternative semantic visionsLibraries and the semantic web; Other cultural heritage institutions and the semantic web; Other organizations and the semantic web; Conclusion; C H A P T E R 3 Existing ontologies; Introduction; Ontology documentation; Ontologies for representing ontologies; Ontologies for libraries; Upper ontologies; Cultural heritage data models; Ontologies for the web; Conclusion; C H A P T E R 4 Adopting ontologies; Introduction; Reusing ontologies: application profiles and data models; Identifying ontologies; The ideal ontology discovery tool; Selection criteria; Conclusion C H A P T E R 5 Building ontologiesIntroduction; Approaches to building an ontology; The twelve steps; Ontology development example: Bibliometric Metrics Ontology element set; Conclusion; C H A P T E R 6 Interrogating ontologies; Introduction; Interrogating ontologies for reuse; Interrogating a knowledge base; Understanding ontology use; Conclusion; C H A P T E R 7 The future of ontologies and the information professional; Introduction; The future of ontologies for knowledge discovery; The future role of library and information professionals; The practical development of ontologies
  8. Hodgson, J.P.E.: Knowledge representation and language in AI (1991) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 1529) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=1529,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 1529, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1529)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The aim of this book is to highlight the relationship between knowledge representation and language in artificial intelligence, and in particular on the way in which the choice of representation influences the language used to discuss a problem - and vice versa. Opening with a discussion of knowledge representation methods, and following this with a look at reasoning methods, the author begins to make his case for the intimate relationship between language and representation. He shows how each representation method fits particularly well with some reasoning methods and less so with others, using specific languages as examples. The question of representation change, an important and complex issue about which very little is known, is addressed. Dr Hodgson gathers together recent work on problem solving, showing how, in some cases, it has been possible to use representation changes to recast problems into a language that makes them easier to solve. The author maintains throughout that the relationships that this book explores lie at the heart of the construction of large systems, examining a number of the current large AI systems from the viewpoint of representation and language to prove his point.
  9. Handbook on ontologies (2004) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 1952) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=1952,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 1952, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1952)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    An ontology is a description (like a formal specification of a program) of concepts and relationships that can exist for an agent or a community of agents. The concept is important for the purpose of enabling knowledge sharing and reuse. The Handbook on Ontologies provides a comprehensive overview of the current status and future prospectives of the field of ontologies. The handbook demonstrates standards that have been created recently, it surveys methods that have been developed and it shows how to bring both into practice of ontology infrastructures and applications that are the best of their kind.
  10. Helbig, H.: Knowledge representation and the semantics of natural language (2014) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 2396) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=2396,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 2396, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2396)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Natural Language is not only the most important means of communication between human beings, it is also used over historical periods for the preservation of cultural achievements and their transmission from one generation to the other. During the last few decades, the flod of digitalized information has been growing tremendously. This tendency will continue with the globalisation of information societies and with the growing importance of national and international computer networks. This is one reason why the theoretical understanding and the automated treatment of communication processes based on natural language have such a decisive social and economic impact. In this context, the semantic representation of knowledge originally formulated in natural language plays a central part, because it connects all components of natural language processing systems, be they the automatic understanding of natural language (analysis), the rational reasoning over knowledge bases, or the generation of natural language expressions from formal representations. This book presents a method for the semantic representation of natural language expressions (texts, sentences, phrases, etc.) which can be used as a universal knowledge representation paradigm in the human sciences, like linguistics, cognitive psychology, or philosophy of language, as well as in computational linguistics and in artificial intelligence. It is also an attempt to close the gap between these disciplines, which to a large extent are still working separately.
  11. Curras, E.: Ontologies, taxonomy and thesauri in information organisation and retrieval (2010) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 3276) [ClassicSimilarity], result of:
              0.006765375 = score(doc=3276,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 3276, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3276)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The originality of this book, which deals with such a new subject matter, lies in the application of methods and concepts never used before - such as Ontologies and Taxonomies, as well as Thesauri - to the ordering of knowledge based on primary information. Chapters in the book also examine the study of Ontologies, Taxonomies and Thesauri from the perspective of Systematics and General Systems Theory. "Ontologies, Taxonomy and Thesauri in Information Organisation and Retrieval" will be extremely useful to those operating within the network of related fields, which includes Documentation and Information Science.
    Content
    Inhalt: 1. From classifications to ontologies Knowledge - A new concept of knowledge - Knowledge and information - Knowledge organisation - Knowledge organisation and representation - Cognitive sciences - Talent management - Learning systematisation - Historical evolution - From classification to knowledge organisation - Why ontologies exist - Ontologies - The structure of ontologies 2. Taxonomies and thesauri From ordering to taxonomy - The origins of taxonomy - Hierarchical and horizontal order - Correlation with classifications - Taxonomy in computer science - Computing taxonomy - Definitions - Virtual taxonomy, cybernetic taxonomy - Taxonomy in Information Science - Similarities between taxonomies and thesauri - ifferences between taxonomies and thesauri 3. Thesauri Terminology in classification systems - Terminological languages - Thesauri - Thesauri definitions - Conditions that a thesaurus must fulfil - Historical evolution - Classes of thesauri 4. Thesauri in (cladist) systematics Systematics - Systematics as a noun - Definitions and historic evolution over time - Differences between taxonomy and systematics - Systematics in thesaurus construction theory - Classic, numerical and cladist systematics - Classic systematics in information science - Numerical systematics in information science - Thesauri in cladist systematics - Systematics in information technology - Some examples 5. Thesauri in systems theory Historical evolution - Approach to systems - Systems theory applied to the construction of thesauri - Components - Classes of system - Peculiarities of these systems - Working methods - Systems theory applied to ontologies and taxonomies
  12. King, B.E.; Reinold, K.: Finding the concept, not just the word : a librarian's guide to ontologies and semantics (2008) 0.00
    0.0015222094 = product of:
      0.0030444188 = sum of:
        0.0030444188 = product of:
          0.0060888375 = sum of:
            0.0060888375 = weight(_text_:a in 2863) [ClassicSimilarity], result of:
              0.0060888375 = score(doc=2863,freq=18.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.114655405 = fieldWeight in 2863, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=2863)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Aimed at students and professionals within Library and Information Services (LIS), this book is about the power and potential of ontologies to enhance the electronic search process. The book will compare search strategies and results in the current search environment and demonstrate how these could be transformed using ontologies and concept searching. Simple descriptions, visual representations, and examples of ontologies will bring a full understanding of how these concept maps are constructed to enhance retrieval through natural language queries. Readers will gain a sense of how ontologies are currently being used and how they could be applied in the future, encouraging them to think about how their own work and their users' search experiences could be enhanced by the creation of a customized ontology. Key Features Written by a librarian, for librarians (most work on ontologies is written and read by people in computer science and knowledge management) Written by a librarian who has created her own ontology and performed research on its capabilities Written in easily understandable language, with concepts broken down to the basics The Author Ms. King is the Information Specialist at the Center on Media and Child Health at Children's Hospital Boston. She is a graduate of Smith College (B.A.) and Simmons College (M.L.I.S.). She is an active member of the Special Libraries Association, and was the recipient of the 2005 SLA Innovation in Technology Award for the creation of a customized media effects ontology used for semantic searching. Readership The book is aimed at practicing librarians and information professionals as well as graduate students of Library and Information Science. Contents Introduction Part 1: Understanding Ontologies - organising knowledge; what is an ontology? How are ontologies different from other knowledge representations? How are ontologies currently being used? Key concepts Ontologies in semantic search - determining whether a search was successful; what does semantic search have to offer? Semantic techniques; semantic searching behind the scenes; key concepts Creating an ontology - how to create an ontology; key concepts Building an ontology from existing components - choosing components; customizing your knowledge structure; key concepts Part 2: Semantic Technologies Natural language processing - tagging parts of speech; grammar-based NLP; statistical NLP; semantic analysis,; current applications of NLP; key concepts Using metadata to add semantic information - structured languages; metadata tagging; semantic tagging; key concepts Other semantic capabilities - semantic classification; synsets; topic maps; rules and inference; key concepts Part 3: Case Studies: Theory into Practice Biogen Idec: using semantics in drug discovery research - Biogen Idec's solution; the future The Center on Media and Child Health: using an ontology to explore the effects of media - building the ontology; choosing the source; implementing and comparing to Boolean search; the future Partners HealthCare System: semantic technologies to improve clinical decision support - the medical appointment; partners healthcare system's solution; lessons learned; the future MINDSWAP: using ontologies to aid terrorism; intelligence gathering - building, using and maintaining the ontology; sharing information with other experts; future plans Part 4: Advanced Topics Languages for expressing ontologies - XML; RDF; OWL; SKOS; Ontology language features - comparison chart Tools for building ontologies - basic criteria when evaluating ontologies Part 5: Transitions to the Future
  13. Kavouras, M.; Kokla, M.: Theories of geographic concepts : ontological approaches to semantic integration (2008) 0.00
    0.0015127839 = product of:
      0.0030255679 = sum of:
        0.0030255679 = product of:
          0.0060511357 = sum of:
            0.0060511357 = weight(_text_:a in 3275) [ClassicSimilarity], result of:
              0.0060511357 = score(doc=3275,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11394546 = fieldWeight in 3275, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3275)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Written by experts in the field, this book addresses theoretical, formal, and pragmatic issues of geographic knowledge representation and integration based on an ontological approach. The first section sets the context by emphasizing the importance of philosophical, cognitive, and formal theories in preserving the semantics of geographic concepts during ontology development and integration. Section two exhausts all theoretical issues related to the subject and section three introduces a number of formal tools. Section four introduces a general method with the necessary steps to ontology integration and applies it to a number of ontology integration cases.
    Footnote
    Rez. in: KO 36(2009) no.2/3, S.178-180 (Birger Hjørland): " ... Theories of Geographic Concepts offers, despite such omissions, a rich and valuable overview of a complicated field. The different perspectives it presents are views and concepts that are at the centre of attention in contemporary research. Our field of KO cannot afford to ignore this literature and it is important that we come in closer contact with specific domains, including geography. This book should therefore be included in libraries and collections serving research and teaching in Knowledge Organization."
  14. Baofu, P.: ¬The future of information architecture : conceiving a better way to understand taxonomy, network, and intelligence (2008) 0.00
    0.0014647468 = product of:
      0.0029294936 = sum of:
        0.0029294936 = product of:
          0.005858987 = sum of:
            0.005858987 = weight(_text_:a in 2257) [ClassicSimilarity], result of:
              0.005858987 = score(doc=2257,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11032722 = fieldWeight in 2257, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2257)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Future of Information Architecture examines issues surrounding why information is processed, stored and applied in the way that it has, since time immemorial. Contrary to the conventional wisdom held by many scholars in human history, the recurrent debate on the explanation of the most basic categories of information (eg space, time causation, quality, quantity) has been misconstrued, to the effect that there exists some deeper categories and principles behind these categories of information - with enormous implications for our understanding of reality in general. To understand this, the book is organised in to four main parts: Part I begins with the vital question concerning the role of information within the context of the larger theoretical debate in the literature. Part II provides a critical examination of the nature of data taxonomy from the main perspectives of culture, society, nature and the mind. Part III constructively invesitgates the world of information network from the main perspectives of culture, society, nature and the mind. Part IV proposes six main theses in the authors synthetic theory of information architecture, namely, (a) the first thesis on the simpleness-complicatedness principle, (b) the second thesis on the exactness-vagueness principle (c) the third thesis on the slowness-quickness principle (d) the fourth thesis on the order-chaos principle, (e) the fifth thesis on the symmetry-asymmetry principle, and (f) the sixth thesis on the post-human stage.
  15. Semantische Technologien : Grundlagen - Konzepte - Anwendungen (2012) 0.00
    0.0014500252 = product of:
      0.0029000505 = sum of:
        0.0029000505 = product of:
          0.005800101 = sum of:
            0.005800101 = weight(_text_:a in 167) [ClassicSimilarity], result of:
              0.005800101 = score(doc=167,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10921837 = fieldWeight in 167, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=167)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Inhalt: 1. Einleitung (A. Dengel, A. Bernardi) 2. Wissensrepräsentation (A. Dengel, A. Bernardi, L. van Elst) 3. Semantische Netze, Thesauri und Topic Maps (O. Rostanin, G. Weber) 4. Das Ressource Description Framework (T. Roth-Berghofer) 5. Ontologien und Ontologie-Abgleich in verteilten Informationssystemen (L. van Elst) 6. Anfragesprachen und Reasoning (M. Sintek) 7. Linked Open Data, Semantic Web Datensätze (G.A. Grimnes, O. Hartig, M. Kiesel, M. Liwicki) 8. Semantik in der Informationsextraktion (B. Adrian, B. Endres-Niggemeyer) 9. Semantische Suche (K. Schumacher, B. Forcher, T. Tran) 10. Erklärungsfähigkeit semantischer Systeme (B. Forcher, T. Roth-Berghofer, S. Agne) 11. Semantische Webservices zur Steuerung von Prooduktionsprozessen (M. Loskyll, J. Schlick, S. Hodeck, L. Ollinger, C. Maxeiner) 12. Wissensarbeit am Desktop (S. Schwarz, H. Maus, M. Kiesel, L. Sauermann) 13. Semantische Suche für medizinische Bilder (MEDICO) (M. Möller, M. Sintek) 14. Semantische Musikempfehlungen (S. Baumann, A. Passant) 15. Optimierung von Instandhaltungsprozessen durch Semantische Technologien (P. Stephan, M. Loskyll, C. Stahl, J. Schlick)
    Editor
    Dengel, A.
  16. Arp, R.; Smith, B.; Spear, A.D.: Building ontologies with basic formal ontology (2015) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 3444) [ClassicSimilarity], result of:
              0.0054123 = score(doc=3444,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 3444, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3444)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In the era of "big data," science is increasingly information driven, and the potential for computers to store, manage, and integrate massive amounts of data has given rise to such new disciplinary fields as biomedical informatics. Applied ontology offers a strategy for the organization of scientific information in computer-tractable form, drawing on concepts not only from computer and information science but also from linguistics, logic, and philosophy. This book provides an introduction to the field of applied ontology that is of particular relevance to biomedicine, covering theoretical components of ontologies, best practices for ontology design, and examples of biomedical ontologies in use. After defining an ontology as a representation of the types of entities in a given domain, the book distinguishes between different kinds of ontologies and taxonomies, and shows how applied ontology draws on more traditional ideas from metaphysics. It presents the core features of the Basic Formal Ontology (BFO), now used by over one hundred ontology projects around the world, and offers examples of domain ontologies that utilize BFO. The book also describes Web Ontology Language (OWL), a common framework for Semantic Web technologies. Throughout, the book provides concrete recommendations for the design and construction of domain ontologies.
  17. Reasoning Web : Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures (2017) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 3934) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=3934,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 3934, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3934)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Neumaier, Sebastian (et al.): Data Integration for Open Data on the Web - Stamou, Giorgos (et al.): Ontological Query Answering over Semantic Data - Calì, Andrea: Ontology Querying: Datalog Strikes Back - Sequeda, Juan F.: Integrating Relational Databases with the Semantic Web: A Reflection - Rousset, Marie-Christine (et al.): Datalog Revisited for Reasoning in Linked Data - Kaminski, Roland (et al.): A Tutorial on Hybrid Answer Set Solving with clingo - Eiter, Thomas (et al.): Answer Set Programming with External Source Access - Lukasiewicz, Thomas: Uncertainty Reasoning for the Semantic Web - Calvanese, Diego (et al.): OBDA for Log Extraction in Process Mining
  18. Semantic applications (2018) 0.00
    0.0011959607 = product of:
      0.0023919214 = sum of:
        0.0023919214 = product of:
          0.0047838427 = sum of:
            0.0047838427 = weight(_text_:a in 5204) [ClassicSimilarity], result of:
              0.0047838427 = score(doc=5204,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.090081796 = fieldWeight in 5204, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5204)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This book describes proven methodologies for developing semantic applications: software applications which explicitly or implicitly uses the semantics (i.e., the meaning) of a domain terminology in order to improve usability, correctness, and completeness. An example is semantic search, where synonyms and related terms are used for enriching the results of a simple text-based search. Ontologies, thesauri or controlled vocabularies are the centerpiece of semantic applications. The book includes technological and architectural best practices for corporate use.
  19. Semantic digital libraries (2009) 0.00
    0.0011717974 = product of:
      0.0023435948 = sum of:
        0.0023435948 = product of:
          0.0046871896 = sum of:
            0.0046871896 = weight(_text_:a in 3371) [ClassicSimilarity], result of:
              0.0046871896 = score(doc=3371,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.088261776 = fieldWeight in 3371, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3371)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Libraries have always been an inspiration for the standards and technologies developed by semantic web activities. However, except for the Dublin Core specification, semantic web and social networking technologies have not been widely adopted and further developed by major digital library initiatives and projects. Yet semantic technologies offer a new level of flexibility, interoperability, and relationships for digital repositories. Kruk and McDaniel present semantic web-related aspects of current digital library activities, and introduce their functionality; they show examples ranging from general architectural descriptions to detailed usages of specific ontologies, and thus stimulate the awareness of researchers, engineers, and potential users of those technologies. Their presentation is completed by chapters on existing prototype systems such as JeromeDL, BRICKS, and Greenstone, as well as a look into the possible future of semantic digital libraries. This book is aimed at researchers and graduate students in areas like digital libraries, the semantic web, social networks, and information retrieval. This audience will benefit from detailed descriptions of both today's possibilities and also the shortcomings of applying semantic web technologies to large digital repositories of often unstructured data.
    Content
    Inhalt: Introduction to Digital Libraries and Semantic Web: Introduction / Bill McDaniel and Sebastian Ryszard Kruk - Digital Libraries and Knowledge Organization / Dagobert Soergel - Semantic Web and Ontologies / Marcin Synak, Maciej Dabrowski and Sebastian Ryszard Kruk - Social Semantic Information Spaces / John G. Breslin A Vision of Semantic Digital Libraries: Goals of Semantic Digital Libraries / Sebastian Ryszard Kruk and Bill McDaniel - Architecture of Semantic Digital Libraries / Sebastian Ryszard Kruk, Adam Westerki and Ewelina Kruk - Long-time Preservation / Markus Reis Ontologies for Semantic Digital Libraries: Bibliographic Ontology / Maciej Dabrowski, Macin Synak and Sebastian Ryszard Kruk - Community-aware Ontologies / Slawomir Grzonkowski, Sebastian Ryszard Kruk, Adam Gzella, Jakub Demczuk and Bill McDaniel Prototypes of Semantic Digital Libraries: JeromeDL: The Social Semantic Digital Library / Sebastian Ryszard Kruk, Mariusz Cygan, Adam Gzella, Tomasz Woroniecki and Maciej Dabrowski - The BRICKS Digital Library Infrastructure / Bernhard Haslhofer and Predrag Knezevié - Semantics in Greenstone / Annika Hinze, George Buchanan, David Bainbridge and Ian Witten Building the Future - Semantic Digital Libraries in Use: Hyperbooks / Gilles Falquet, Luka Nerima and Jean-Claude Ziswiler - Semantic Digital Libraries for Archiving / Bill McDaniel - Evaluation of Semantic and Social Technologies for Digital Libraries / Sebastian Ryszard Kruk, Ewelina Kruk and Katarzyna Stankiewicz - Conclusions: The Future of Semantic Digital Libraries / Sebastian Ryszard Kruk and Bill McDaniel
  20. Semantic technologies in content management systems : trends, applications and evaluations (2012) 0.00
    0.0011717974 = product of:
      0.0023435948 = sum of:
        0.0023435948 = product of:
          0.0046871896 = sum of:
            0.0046871896 = weight(_text_:a in 4893) [ClassicSimilarity], result of:
              0.0046871896 = score(doc=4893,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.088261776 = fieldWeight in 4893, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4893)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Content Management Systems (CMSs) are used in almost every industry by millions of end-user organizations. In contrast to the 90s, they are no longer used as isolated applications in one organization but they support critical core operations in business ecosystems. Content management today is more interactive and more integrative: interactive because end-users are increasingly content creators themselves and integrative because content elements can be embedded into various other applications. The authors of this book investigate how Semantic Technologies can increase interactivity and integration capabilities of CMSs and discuss their business value to millions of end-user organizations. This book has therefore the objective, to reflect existing applications as well as to discuss and present new applications for CMSs that use Semantic Technologies. An evaluation of 27 CMSs concludes this book and provides a basis for IT executives that plan to adopt or replace a CMS in the near future.
    Content
    On the Changing Market for Content Management Systems: Status and Outlook - Wolfgang Maass Empowering the Distributed Editorial Workforce - Steve McNally The Rise of Semantic-aware Applications - Stéphane Croisier Simplified Semantic Enhancement of JCR-based Content Applications -Bertrand Delacretaz and Michael Marth Dynamic Semantic Publishing - Jem Rayfield Semantics in the Domain of eGovernment - Luis Alvarez Sabucedo and Luis Anido Rifón The Interactive Knowledge Stack (IKS): A Vision for the Future of CMS - Wernher Behrendt Essential Requirements for Semantic CMS - Valentina Presutti Evaluation of Content Management Systems - Tobias Kowatsch and Wolfgang Maass CMS with No Particular Industry Focus (versch. Beiträge)

Languages

  • e 20
  • d 1
  • More… Less…

Subjects

Classifications