Search (51 results, page 2 of 3)

  • × author_ss:"Egghe, L."
  1. Egghe, L.: Dynamic h-index : the Hirsch index in function of time (2007) 0.00
    0.0020609628 = product of:
      0.012365777 = sum of:
        0.012365777 = weight(_text_:in in 147) [ClassicSimilarity], result of:
          0.012365777 = score(doc=147,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.2082456 = fieldWeight in 147, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=147)
      0.16666667 = coord(1/6)
    
    Abstract
    When there are a group of articles and the present time is fixed we can determine the unique number h being the number of articles that received h or more citations while the other articles received a number of citations which is not larger than h. In this article, the time dependence of the h-index is determined. This is important to describe the expected career evolution of a scientist's work or of a journal's production in a fixed year.
  2. Egghe, L.: ¬A noninformetric analysis of the relationship between citation age and journal productivity (2001) 0.00
    0.0019955188 = product of:
      0.011973113 = sum of:
        0.011973113 = weight(_text_:in in 5685) [ClassicSimilarity], result of:
          0.011973113 = score(doc=5685,freq=10.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.20163295 = fieldWeight in 5685, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5685)
      0.16666667 = coord(1/6)
    
    Abstract
    A problem, raised by Wallace (JASIS, 37,136-145,1986), on the relation between the journal's median citation age and its number of articles is studied. Leaving open the problem as such, we give a statistical explanation of this relationship, when replacing "median" by "mean" in Wallace's problem. The cloud of points, found by Wallace, is explained in this sense that the points are scattered over the area in first quadrant, limited by a curve of the form y=1 + E/x**2 where E is a constant. This curve is obtained by using the Central Limit Theorem in statistics and, hence, has no intrinsic informetric foundation. The article closes with some reflections on explanations of regularities in informetrics, based on statistical, probabilistic or informetric results, or on a combination thereof
  3. Egghe, L.: Influence of adding or deleting items and sources on the h-index (2010) 0.00
    0.0019955188 = product of:
      0.011973113 = sum of:
        0.011973113 = weight(_text_:in in 3336) [ClassicSimilarity], result of:
          0.011973113 = score(doc=3336,freq=10.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.20163295 = fieldWeight in 3336, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3336)
      0.16666667 = coord(1/6)
    
    Abstract
    Adding or deleting items such as self-citations has an influence on the h-index of an author. This influence will be proved mathematically in this article. We hereby prove the experimental finding in E. Gianoli and M.A. Molina-Montenegro ([2009]) that the influence of adding or deleting self-citations on the h-index is greater for low values of the h-index. Why this is logical also is shown by a simple theoretical example. Adding or deleting sources such as adding or deleting minor contributions of an author also has an influence on the h-index of this author; this influence is modeled in this article. This model explains some practical examples found in X. Hu, R. Rousseau, and J. Chen (in press).
  4. Egghe, L.: ¬The power of power laws and an interpretation of Lotkaian informetric systems as self-similar fractals (2005) 0.00
    0.0019676082 = product of:
      0.011805649 = sum of:
        0.011805649 = weight(_text_:in in 3466) [ClassicSimilarity], result of:
          0.011805649 = score(doc=3466,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.19881277 = fieldWeight in 3466, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3466)
      0.16666667 = coord(1/6)
    
    Abstract
    Power laws as defined in 1926 by A. Lotka are increasing in importance because they have been found valid in varied social networks including the Internet. In this article some unique properties of power laws are proven. They are shown to characterize functions with the scalefree property (also called seif-similarity property) as weIl as functions with the product property. Power laws have other desirable properties that are not shared by exponential laws, as we indicate in this paper. Specifically, Naranan (1970) proves the validity of Lotka's law based on the exponential growth of articles in journals and of the number of journals. His argument is reproduced here and a discrete-time argument is also given, yielding the same law as that of Lotka. This argument makes it possible to interpret the information production process as a seif-similar fractal and show the relation between Lotka's exponent and the (seif-similar) fractal dimension of the system. Lotkaian informetric systems are seif-similar fractals, a fact revealed by Mandelbrot (1977) in relation to nature, but is also true for random texts, which exemplify a very special type of informetric system.
  5. Egghe, L.: Properties of the n-overlap vector and n-overlap similarity theory (2006) 0.00
    0.0019676082 = product of:
      0.011805649 = sum of:
        0.011805649 = weight(_text_:in in 194) [ClassicSimilarity], result of:
          0.011805649 = score(doc=194,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.19881277 = fieldWeight in 194, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=194)
      0.16666667 = coord(1/6)
    
    Abstract
    In the first part of this article the author defines the n-overlap vector whose coordinates consist of the fraction of the objects (e.g., books, N-grams, etc.) that belong to 1, 2, , n sets (more generally: families) (e.g., libraries, databases, etc.). With the aid of the Lorenz concentration theory, a theory of n-overlap similarity is conceived together with corresponding measures, such as the generalized Jaccard index (generalizing the well-known Jaccard index in case n 5 2). Next, the distributional form of the n-overlap vector is determined assuming certain distributions of the object's and of the set (family) sizes. In this section the decreasing power law and decreasing exponential distribution is explained for the n-overlap vector. Both item (token) n-overlap and source (type) n-overlap are studied. The n-overlap properties of objects indexed by a hierarchical system (e.g., books indexed by numbers from a UDC or Dewey system or by N-grams) are presented in the final section. The author shows how the results given in the previous section can be applied as well as how the Lorenz order of the n-overlap vector is respected by an increase or a decrease of the level of refinement in the hierarchical system (e.g., the value N in N-grams).
  6. Egghe, L.; Rousseau, R.: ¬A measure for the cohesion of weighted networks (2003) 0.00
    0.001821651 = product of:
      0.010929906 = sum of:
        0.010929906 = weight(_text_:in in 5157) [ClassicSimilarity], result of:
          0.010929906 = score(doc=5157,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18406484 = fieldWeight in 5157, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5157)
      0.16666667 = coord(1/6)
    
    Abstract
    Measurement of the degree of interconnectedness in graph like networks of hyperlinks or citations can indicate the existence of research fields and assist in comparative evaluation of research efforts. In this issue we begin with Egghe and Rousseau who review compactness measures and investigate the compactness of a network as a weighted graph with dissimilarity values characterizing the arcs between nodes. They make use of a generalization of the Botofogo, Rivlin, Shneiderman, (BRS) compaction measure which treats the distance between unreachable nodes not as infinity but rather as the number of nodes in the network. The dissimilarity values are determined by summing the reciprocals of the weights of the arcs in the shortest chain between two nodes where no weight is smaller than one. The BRS measure is then the maximum value for the sum of the dissimilarity measures less the actual sum divided by the difference between the maximum and minimum. The Wiener index, the sum of all elements in the dissimilarity matrix divided by two, is then computed for Small's particle physics co-citation data as well as the BRS measure, the dissimilarity values and shortest paths. The compactness measure for the weighted network is smaller than for the un-weighted. When the bibliographic coupling network is utilized it is shown to be less compact than the co-citation network which indicates that the new measure produces results that confirm to an obvious case.
  7. Egghe, L.: ¬The influence of transformations on the h-index and the g-index (2008) 0.00
    0.0018033426 = product of:
      0.010820055 = sum of:
        0.010820055 = weight(_text_:in in 1881) [ClassicSimilarity], result of:
          0.010820055 = score(doc=1881,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1822149 = fieldWeight in 1881, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1881)
      0.16666667 = coord(1/6)
    
    Abstract
    In a previous article, we introduced a general transformation on sources and one on items in an arbitrary information production process (IPP). In this article, we investigate the influence of these transformations on the h-index and on the g-index. General formulae that describe this influence are presented. These are applied to the case that the size-frequency function is Lotkaian (i.e., is a decreasing power function). We further show that the h-index of the transformed IPP belongs to the interval bounded by the two transformations of the h-index of the original IPP, and we also show that this property is not true for the g-index.
  8. Egghe, L.: Expansion of the field of informetrics : the second special issue (2006) 0.00
    0.0017848461 = product of:
      0.010709076 = sum of:
        0.010709076 = weight(_text_:in in 7119) [ClassicSimilarity], result of:
          0.010709076 = score(doc=7119,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18034597 = fieldWeight in 7119, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.09375 = fieldNorm(doc=7119)
      0.16666667 = coord(1/6)
    
    Footnote
    Einführung in ein "Special Issue on Informetrics"
  9. Egghe, L.: Expansion of the field of informetrics : origins and consequences (2005) 0.00
    0.0017848461 = product of:
      0.010709076 = sum of:
        0.010709076 = weight(_text_:in in 1910) [ClassicSimilarity], result of:
          0.010709076 = score(doc=1910,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18034597 = fieldWeight in 1910, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.09375 = fieldNorm(doc=1910)
      0.16666667 = coord(1/6)
    
    Footnote
    Einführung in ein "Special Issue on Infometrics"
  10. Egghe, L.; Guns, R.: Applications of the generalized law of Benford to informetric data (2012) 0.00
    0.0017848461 = product of:
      0.010709076 = sum of:
        0.010709076 = weight(_text_:in in 376) [ClassicSimilarity], result of:
          0.010709076 = score(doc=376,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18034597 = fieldWeight in 376, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=376)
      0.16666667 = coord(1/6)
    
    Abstract
    In a previous work (Egghe, 2011), the first author showed that Benford's law (describing the logarithmic distribution of the numbers 1, 2, ... , 9 as first digits of data in decimal form) is related to the classical law of Zipf with exponent 1. The work of Campanario and Coslado (2011), however, shows that Benford's law does not always fit practical data in a statistical sense. In this article, we use a generalization of Benford's law related to the general law of Zipf with exponent ? > 0. Using data from Campanario and Coslado, we apply nonlinear least squares to determine the optimal ? and show that this generalized law of Benford fits the data better than the classical law of Benford.
  11. Egghe, L.: Relations between the continuous and the discrete Lotka power function (2005) 0.00
    0.0015457221 = product of:
      0.009274333 = sum of:
        0.009274333 = weight(_text_:in in 3464) [ClassicSimilarity], result of:
          0.009274333 = score(doc=3464,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1561842 = fieldWeight in 3464, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3464)
      0.16666667 = coord(1/6)
    
    Abstract
    The discrete Lotka power function describes the number of sources (e.g., authors) with n = 1, 2, 3, ... items (e.g., publications). As in econometrics, informetrics theory requires functions of a continuous variable j, replacing the discrete variable n. Now j represents item densities instead of number of items. The continuous Lotka power function describes the density of sources with item density j. The discrete Lotka function one obtains from data, obtained empirically; the continuous Lotka function is the one needed when one wants to apply Lotkaian informetrics, i.e., to determine properties that can be derived from the (continuous) model. It is, hence, important to know the relations between the two models. We show that the exponents of the discrete Lotka function (if not too high, i.e., within limits encountered in practice) and of the continuous Lotka function are approximately the same. This is important to know in applying theoretical results (from the continuous model), derived from practical data.
  12. Egghe, L.; Ravichandra Rao, I.K.: ¬The influence of the broadness of a query of a topic on its h-index : models and examples of the h-index of n-grams (2008) 0.00
    0.0014873719 = product of:
      0.008924231 = sum of:
        0.008924231 = weight(_text_:in in 2009) [ClassicSimilarity], result of:
          0.008924231 = score(doc=2009,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.15028831 = fieldWeight in 2009, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2009)
      0.16666667 = coord(1/6)
    
    Abstract
    The article studies the influence of the query formulation of a topic on its h-index. In order to generate pure random sets of documents, we used N-grams (N variable) to measure this influence: strings of zeros, truncated at the end. The used databases are WoS and Scopus. The formula h=T**1/alpha, proved in Egghe and Rousseau (2006) where T is the number of retrieved documents and is Lotka's exponent, is confirmed being a concavely increasing function of T. We also give a formula for the relation between h and N the length of the N-gram: h=D10**(-N/alpha) where D is a constant, a convexly decreasing function, which is found in our experiments. Nonlinear regression on h=T**1/alpha gives an estimation of , which can then be used to estimate the h-index of the entire database (Web of Science [WoS] and Scopus): h=S**1/alpha, , where S is the total number of documents in the database.
  13. Rousseau, R.; Egghe, L.; Guns, R.: Becoming metric-wise : a bibliometric guide for researchers (2018) 0.00
    0.0014873719 = product of:
      0.008924231 = sum of:
        0.008924231 = weight(_text_:in in 5226) [ClassicSimilarity], result of:
          0.008924231 = score(doc=5226,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.15028831 = fieldWeight in 5226, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5226)
      0.16666667 = coord(1/6)
    
    Abstract
    Aims to inform researchers about metrics so that they become aware of the evaluative techniques being applied to their scientific output. Understanding these concepts will help them during their funding initiatives, and in hiring and tenure. The book not only describes what indicators do (or are designed to do, which is not always the same thing), but also gives precise mathematical formulae so that indicators can be properly understood and evaluated. Metrics have become a critical issue in science, with widespread international discussion taking place on the subject across scientific journals and organizations. As researchers should know the publication-citation context, the mathematical formulae of indicators being used by evaluating committees and their consequences, and how such indicators might be misused, this book provides an ideal tome on the topic. Provides researchers with a detailed understanding of bibliometric indicators and their applications. Empowers researchers looking to understand the indicators relevant to their work and careers. Presents an informed and rounded picture of bibliometrics, including the strengths and shortcomings of particular indicators. Supplies the mathematics behind bibliometric indicators so they can be properly understood. Written by authors with longstanding expertise who are considered global leaders in the field of bibliometrics
    Footnote
    Rez. in: JASIST 70(2019) no.5, S.530-532 (I. Dorsch)
  14. Egghe, L.; Liang, L.; Rousseau, R.: Fundamental properties of rhythm sequences (2008) 0.00
    0.0014724231 = product of:
      0.008834538 = sum of:
        0.008834538 = weight(_text_:in in 1965) [ClassicSimilarity], result of:
          0.008834538 = score(doc=1965,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14877784 = fieldWeight in 1965, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1965)
      0.16666667 = coord(1/6)
    
    Abstract
    Fundamental mathematical properties of rhythm sequences are studied. In particular, a set of three axioms for valid rhythm indicators is proposed, and it is shown that the R-indicator satisfies only two out of three but that the R-indicator satisfies all three. This fills a critical, logical gap in the study of these indicator sequences. Matrices leading to a constant R-sequence are called baseline matrices. They are characterized as matrices with constant w-year diachronous impact factors. The relation with classical impact factors is clarified. Using regression analysis matrices with a rhythm sequence that is on average equal to 1 (smaller than 1, larger than 1) are characterized.
  15. Egghe, L.: Theory of the topical coverage of multiple databases (2013) 0.00
    0.0014724231 = product of:
      0.008834538 = sum of:
        0.008834538 = weight(_text_:in in 526) [ClassicSimilarity], result of:
          0.008834538 = score(doc=526,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14877784 = fieldWeight in 526, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=526)
      0.16666667 = coord(1/6)
    
    Abstract
    We present a model that describes which fraction of the literature on a certain topic we will find when we use n (n = 1, 2, .) databases. It is a generalization of the theory of discovering usability problems. We prove that, in all practical cases, this fraction is a concave function of n, the number of used databases, thereby explaining some graphs that exist in the literature. We also study limiting features of this fraction for n very high and we characterize the case that we find all literature on a certain topic for n high enough.
  16. Egghe, L.; Rousseau, R.: Aging, obsolescence, impact, growth, and utilization : definitions and relations (2000) 0.00
    0.0012620769 = product of:
      0.0075724614 = sum of:
        0.0075724614 = weight(_text_:in in 5154) [ClassicSimilarity], result of:
          0.0075724614 = score(doc=5154,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.12752387 = fieldWeight in 5154, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5154)
      0.16666667 = coord(1/6)
    
    Abstract
    The notions aging, obsolescence, impact, growth, utilization, and their relations are studied. It is shown how to correct an observed citation distribution for growth, once the growth distribution is known. The relation of this correction procedure with the calculation of impact measures is explained. More interestingly, we have shown how the influence of growth on aging can be studied over a complete period as a whole. Here, the difference between the so-called average and global aging distributions is the main factor. Our main result is that growth can influence aging but that it does not cause aging. A short overview of some classical articles on this topic is given. Results of these earlier works are placed in the framework set up in this article
  17. Egghe, L.; Ravichandra Rao, I.K.: Duality revisited : construction of fractional frequency distributions based on two dual Lotka laws (2002) 0.00
    0.0012620769 = product of:
      0.0075724614 = sum of:
        0.0075724614 = weight(_text_:in in 1006) [ClassicSimilarity], result of:
          0.0075724614 = score(doc=1006,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.12752387 = fieldWeight in 1006, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1006)
      0.16666667 = coord(1/6)
    
    Abstract
    Fractional frequency distributions of, for example, authors with a certain (fractional) number of papers are very irregular and, therefore, not easy to model or to explain. This article gives a first attempt to this by assuming two simple Lotka laws (with exponent 2): one for the number of authors with n papers (total count here) and one for the number of papers with n authors, n E N. Based an an earlier made convolution model of Egghe, interpreted and reworked now for discrete scores, we are able to produce theoretical fractional frequency distributions with only one parameter, which are in very close agreement with the practical ones as found in a large dataset produced earlier by Rao. The article also shows that (irregular) fractional frequency distributions are a consequence of Lotka's law, and are not examples of breakdowns of this famous historical law.
  18. Egghe, L.: Zipfian and Lotkaian continuous concentration theory (2005) 0.00
    0.0012620769 = product of:
      0.0075724614 = sum of:
        0.0075724614 = weight(_text_:in in 3678) [ClassicSimilarity], result of:
          0.0075724614 = score(doc=3678,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.12752387 = fieldWeight in 3678, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3678)
      0.16666667 = coord(1/6)
    
    Abstract
    In this article concentration (i.e., inequality) aspects of the functions of Zipf and of Lotka are studied. Since both functions are power laws (i.e., they are mathematically the same) it suffices to develop one concentration theory for power laws and apply it twice for the different interpretations of the laws of Zipf and Lotka. After a brief repetition of the functional relationships between Zipf's law and Lotka's law, we prove that Price's law of concentration is equivalent with Zipf's law. A major part of this article is devoted to the development of continuous concentration theory, based an Lorenz curves. The Lorenz curve for power functions is calculated and, based an this, some important concentration measures such as the ones of Gini, Theil, and the variation coefficient. Using Lorenz curves, it is shown that the concentration of a power law increases with its exponent and this result is interpreted in terms of the functions of Zipf and Lotka.
  19. Egghe, L.; Ravichandra Rao, I.K.: Study of different h-indices for groups of authors (2008) 0.00
    0.0012620769 = product of:
      0.0075724614 = sum of:
        0.0075724614 = weight(_text_:in in 1878) [ClassicSimilarity], result of:
          0.0075724614 = score(doc=1878,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.12752387 = fieldWeight in 1878, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1878)
      0.16666667 = coord(1/6)
    
    Abstract
    In this article, for any group of authors, we define three different h-indices. First, there is the successive h-index h2 based on the ranked list of authors and their h-indices h1 as defined by Schubert (2007). Next, there is the h-index hP based on the ranked list of authors and their number of publications. Finally, there is the h-index hC based on the ranked list of authors and their number of citations. We present formulae for these three indices in Lotkaian informetrics from which it also follows that h2 < hp < hc. We give a concrete example of a group of 167 authors on the topic optical flow estimation. Besides these three h-indices, we also calculate the two-by-two Spearman rank correlation coefficient and prove that these rankings are significantly related.
  20. Egghe, L.: ¬A model for the size-frequency function of coauthor pairs (2008) 0.00
    0.0012620769 = product of:
      0.0075724614 = sum of:
        0.0075724614 = weight(_text_:in in 2366) [ClassicSimilarity], result of:
          0.0075724614 = score(doc=2366,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.12752387 = fieldWeight in 2366, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2366)
      0.16666667 = coord(1/6)
    
    Abstract
    Lotka's law was formulated to describe the number of authors with a certain number of publications. Empirical results (Morris & Goldstein, 2007) indicate that Lotka's law is also valid if one counts the number of publications of coauthor pairs. This article gives a simple model proving this to be true, with the same Lotka exponent, if the number of coauthored papers is proportional to the number of papers of the individual coauthors. Under the assumption that this number of coauthored papers is more than proportional to the number of papers of the individual authors (to be explained in the article), we can prove that the size-frequency function of coauthor pairs is Lotkaian with an exponent that is higher than that of the Lotka function of individual authors, a fact that is confirmed in experimental results.