Search (2 results, page 1 of 1)

  • × author_ss:"Goharian, N."
  • × theme_ss:"Retrievalalgorithmen"
  1. Beitzel, S.M.; Jensen, E.C.; Chowdhury, A.; Grossman, D.; Frieder, O; Goharian, N.: Fusion of effective retrieval strategies in the same information retrieval system (2004) 0.00
    0.0019955188 = product of:
      0.011973113 = sum of:
        0.011973113 = weight(_text_:in in 2502) [ClassicSimilarity], result of:
          0.011973113 = score(doc=2502,freq=10.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.20163295 = fieldWeight in 2502, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2502)
      0.16666667 = coord(1/6)
    
    Abstract
    Prior efforts have shown that under certain situations retrieval effectiveness may be improved via the use of data fusion techniques. Although these improvements have been observed from the fusion of result sets from several distinct information retrieval systems, it has often been thought that fusing different document retrieval strategies in a single information retrieval system will lead to similar improvements. In this study, we show that this is not the case. We hold constant systemic differences such as parsing, stemming, phrase processing, and relevance feedback, and fuse result sets generated from highly effective retrieval strategies in the same information retrieval system. From this, we show that data fusion of highly effective retrieval strategies alone shows little or no improvement in retrieval effectiveness. Furthermore, we present a detailed analysis of the performance of modern data fusion approaches, and demonstrate the reasons why they do not perform weIl when applied to this problem. Detailed results and analyses are included to support our conclusions.
  2. Urbain, J.; Goharian, N.; Frieder, O.: Probabilistic passage models for semantic search of genomics literature (2008) 0.00
    0.0014873719 = product of:
      0.008924231 = sum of:
        0.008924231 = weight(_text_:in in 2380) [ClassicSimilarity], result of:
          0.008924231 = score(doc=2380,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.15028831 = fieldWeight in 2380, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2380)
      0.16666667 = coord(1/6)
    
    Abstract
    We explore unsupervised learning techniques for extracting semantic information about biomedical concepts and topics, and introduce a passage retrieval model for using these semantics in context to improve genomics literature search. Our contributions include a new passage retrieval model based on an undirected graphical model (Markov Random Fields), and new methods for modeling passage-concepts, document-topics, and passage-terms as potential functions within the model. Each potential function includes distributional evidence to disambiguate topics, concepts, and terms in context. The joint distribution across potential functions in the graph represents the probability of a passage being relevant to a biologist's information need. Relevance ranking within each potential function simplifies normalization across potential functions and eliminates the need for tuning of passage retrieval model parameters. Our dimensional indexing model facilitates efficient aggregation of topic, concept, and term distributions. The proposed passage-retrieval model improves search results in the presence of varying levels of semantic evidence, outperforming models of query terms, concepts, or document topics alone. Our results exceed the state-of-the-art for automatic document retrieval by 14.46% (0.3554 vs. 0.3105) and passage retrieval by 15.57% (0.1128 vs. 0.0976) as assessed by the TREC 2007 Genomics Track, and automatic document retrieval by 18.56% (0.3424 vs. 0.2888) as assessed by the TREC 2005 Genomics Track. Automatic document retrieval results for TREC 2007 and TREC 2005 are statistically significant at the 95% confidence level (p = .0359 and .0253, respectively). Passage retrieval is significant at the 90% confidence level (p = 0.0893).