Search (82 results, page 2 of 5)

  • × author_ss:"Leydesdorff, L."
  1. Leydesdorff, L.; Moya-Anegón, F.de; Guerrero-Bote, V.P.: Journal maps on the basis of Scopus data : a comparison with the Journal Citation Reports of the ISI (2010) 0.00
    0.0022310577 = product of:
      0.0133863455 = sum of:
        0.0133863455 = weight(_text_:in in 3335) [ClassicSimilarity], result of:
          0.0133863455 = score(doc=3335,freq=18.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22543246 = fieldWeight in 3335, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3335)
      0.16666667 = coord(1/6)
    
    Abstract
    Using the Scopus dataset (1996-2007) a grand matrix of aggregated journal-journal citations was constructed. This matrix can be compared in terms of the network structures with the matrix contained in the Journal Citation Reports (JCR) of the Institute of Scientific Information (ISI). Because the Scopus database contains a larger number of journals and covers the humanities, one would expect richer maps. However, the matrix is in this case sparser than in the case of the ISI data. This is because of (a) the larger number of journals covered by Scopus and (b) the historical record of citations older than 10 years contained in the ISI database. When the data is highly structured, as in the case of large journals, the maps are comparable, although one may have to vary a threshold (because of the differences in densities). In the case of interdisciplinary journals and journals in the social sciences and humanities, the new database does not add a lot to what is possible with the ISI databases.
  2. Bauer, J.; Leydesdorff, L.; Bornmann, L.: Highly cited papers in Library and Information Science (LIS) : authors, institutions, and network structures (2016) 0.00
    0.0022310577 = product of:
      0.0133863455 = sum of:
        0.0133863455 = weight(_text_:in in 3231) [ClassicSimilarity], result of:
          0.0133863455 = score(doc=3231,freq=18.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22543246 = fieldWeight in 3231, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3231)
      0.16666667 = coord(1/6)
    
    Abstract
    As a follow-up to the highly cited authors list published by Thomson Reuters in June 2014, we analyzed the top 1% most frequently cited papers published between 2002 and 2012 included in the Web of Science (WoS) subject category "Information Science & Library Science." In all, 798 authors contributed to 305 top 1% publications; these authors were employed at 275 institutions. The authors at Harvard University contributed the largest number of papers, when the addresses are whole-number counted. However, Leiden University leads the ranking if fractional counting is used. Twenty-three of the 798 authors were also listed as most highly cited authors by Thomson Reuters in June 2014 (http://highlycited.com/). Twelve of these 23 authors were involved in publishing 4 or more of the 305 papers under study. Analysis of coauthorship relations among the 798 highly cited scientists shows that coauthorships are based on common interests in a specific topic. Three topics were important between 2002 and 2012: (a) collection and exploitation of information in clinical practices; (b) use of the Internet in public communication and commerce; and (c) scientometrics.
  3. Leydesdorff, L.: Why words and co-word cannot map the development of the science (1997) 0.00
    0.0021859813 = product of:
      0.013115887 = sum of:
        0.013115887 = weight(_text_:in in 147) [ClassicSimilarity], result of:
          0.013115887 = score(doc=147,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22087781 = fieldWeight in 147, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=147)
      0.16666667 = coord(1/6)
    
    Abstract
    Analyses and compares in term of co-occurrences and co-absenses of words in a restricted set of full-text articles from a sub-specialty of biochemistry. By using the distribution of words over the section, a clear distinction among 'theoretical' 'observation', and 'methodological' terminology can be made in individual articles. However, at the level of the set this structure is no longer retrieval: Words change both in terms of frequencies of relations with other words, and in terms of positional meaning from 1 text to another. The fluidity of networks in which nodes and links may chenge positions is ecpected to destabilise representations of developments of the sciences on the basis of co-occurrences and co-absenses of words. Discusses the consequences for the lexicographic approach to generating artificial intelligence from scientific texts
  4. Leydesdorff, L.: Clusters and maps of science journals based on bi-connected graphs in Journal Citation Reports (2004) 0.00
    0.0021859813 = product of:
      0.013115887 = sum of:
        0.013115887 = weight(_text_:in in 4427) [ClassicSimilarity], result of:
          0.013115887 = score(doc=4427,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22087781 = fieldWeight in 4427, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4427)
      0.16666667 = coord(1/6)
    
    Abstract
    The aggregated journal-journal citation matrix derived from Journal Citation Reports 2001 can be decomposed into a unique subject classification using the graph-analytical algorithm of bi-connected components. This technique was recently incorporated in software tools for social network analysis. The matrix can be assessed in terms of its decomposability using articulation points which indicate overlap between the components. The articulation points of this set did not exhibit a next-order network of "general science" journals. However, the clusters differ in size and in terms of the internal density of their relations. A full classification of the journals is provided in the Appendix. The clusters can also be extracted and mapped for the visualization.
  5. Zhou, P.; Leydesdorff, L.: ¬A comparison between the China Scientific and Technical Papers and Citations Database and the Science Citation Index in terms of journal hierarchies and interjournal citation relations (2007) 0.00
    0.0021859813 = product of:
      0.013115887 = sum of:
        0.013115887 = weight(_text_:in in 70) [ClassicSimilarity], result of:
          0.013115887 = score(doc=70,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22087781 = fieldWeight in 70, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=70)
      0.16666667 = coord(1/6)
    
    Abstract
    The journal structure in the China Scientific and Technical Papers and Citations Database (CSTPCD) is analyzed from three perspectives: the database level, the specialty level, and the institutional level (i.e., university journals vs. journals issued by the Chinese Academy of Sciences). The results are compared with those for (Chinese) journals included in the Science Citation Index (SCI). The frequency of journal-journal citation relations in the CSTPCD is an order of magnitude lower than in the SCI. Chinese journals, especially high-quality journals, prefer to cite international journals rather than domestic ones; however, Chinese journals do not get an equivalent reception from their international counterparts. The international visibility of Chinese journals is low, but varies among fields of science. Journals of the Chinese Academy of Sciences have a better reception in the international scientific community than university journals.
  6. Leydesdorff, L.; Schank, T.: Dynamic animations of journal maps : indicators of structural changes and interdisciplinary developments (2008) 0.00
    0.0021859813 = product of:
      0.013115887 = sum of:
        0.013115887 = weight(_text_:in in 2358) [ClassicSimilarity], result of:
          0.013115887 = score(doc=2358,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22087781 = fieldWeight in 2358, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2358)
      0.16666667 = coord(1/6)
    
    Abstract
    The dynamic analysis of structural change in the organization of the sciences requires, methodologically, the integration of multivariate and time-series analysis. Structural change - for instance, interdisciplinary development - is often an objective of government interventions. Recent developments in multidimensional scaling (MDS) enable us to distinguish the stress originating in each time-slice from the stress originating from the sequencing of time-slices, and thus to locally optimize the trade-offs between these two sources of variance in the animation. Furthermore, visualization programs like Pajek and Visone allow us to show not only the positions of the nodes, but also their relational attributes such as betweenness centrality. Betweenness centrality in the vector space can be considered as an indicator of interdisciplinarity. Using this indicator, the dynamics of the citation-impact environments of the journals Cognitive Science, Social Networks, and Nanotechnology are animated and assessed in terms of interdisciplinarity among the disciplines involved.
  7. Leydesdorff, L.: ¬The communication of meaning and the structuration of expectations : Giddens' "structuration theory" and Luhmann's "self-organization" (2010) 0.00
    0.0021859813 = product of:
      0.013115887 = sum of:
        0.013115887 = weight(_text_:in in 4004) [ClassicSimilarity], result of:
          0.013115887 = score(doc=4004,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22087781 = fieldWeight in 4004, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4004)
      0.16666667 = coord(1/6)
    
    Abstract
    The communication of meaning as distinct from (Shannon-type) information is central to Luhmann's social systems theory and Giddens' structuration theory of action. These theories share an emphasis on reflexivity, but focus on meaning along a divide between interhuman communication and intentful action as two different systems of reference. Recombining these two theories into a theory about the structuration of expectations, interactions, organization, and self-organization of intentional communications can be simulated based on algorithms from the computation of anticipatory systems. The self-organizing and organizing layers remain rooted in the double contingency of the human encounter, which provides the variation. Organization and self-organization of communication are reflexive upon and therefore reconstructive of each other. Using mutual information in three dimensions, the imprint of meaning processing in the modeling system on the historical organization of uncertainty in the modeled system can be measured. This is shown empirically in the case of intellectual organization as "structurating" structure in the textual domain of scientific articles.
  8. Ye, F.Y.; Yu, S.S.; Leydesdorff, L.: ¬The Triple Helix of university-industry-government relations at the country level and its dynamic evolution under the pressures of globalization (2013) 0.00
    0.0021859813 = product of:
      0.013115887 = sum of:
        0.013115887 = weight(_text_:in in 1110) [ClassicSimilarity], result of:
          0.013115887 = score(doc=1110,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22087781 = fieldWeight in 1110, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1110)
      0.16666667 = coord(1/6)
    
    Abstract
    Using data from the Web of Science (WoS), we analyze the mutual information among university, industry, and government addresses (U-I-G) at the country level for a number of countries. The dynamic evolution of the Triple Helix can thus be compared among developed and developing nations in terms of cross-sectional coauthorship relations. The results show that the Triple Helix interactions among the three subsystems U-I-G become less intensive over time, but unequally for different countries. We suggest that globalization erodes local Triple Helix relations and thus can be expected to have increased differentiation in national systems since the mid-1990s. This effect of globalization is more pronounced in developed countries than in developing ones. In the dynamic analysis, we focus on a more detailed comparison between China and the United States. Specifically, the Chinese Academy of the (Social) Sciences is changing increasingly from a public research institute to an academic one, and this has a measurable effect on China's position in the globalization.
  9. Leydesdorff, L.; Ahrweiler, P.: In search of a network theory of innovations : relations, positions, and perspectives (2014) 0.00
    0.0021034614 = product of:
      0.012620768 = sum of:
        0.012620768 = weight(_text_:in in 1531) [ClassicSimilarity], result of:
          0.012620768 = score(doc=1531,freq=16.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.21253976 = fieldWeight in 1531, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1531)
      0.16666667 = coord(1/6)
    
    Abstract
    As a complement to Nelson and Winter's (1977) article titled "In Search of a Useful Theory of Innovation," a sociological perspective on innovation networks can be elaborated using Luhmann's social systems theory, on the one hand, and Latour's "sociology of translations," on the other. Because of a common focus on communication, these perspectives can be combined as a set of methodologies. Latour's sociology of translations specifies a mechanism for generating variation in relations ("associations"), whereas Luhmann's systems perspective enables the specification of (functionally different) selection environments such as markets, professional organizations, and political control. Selection environments can be considered as mechanisms of social coordination that can self-organize-beyond the control of human agency-into regimes in terms of interacting codes of communication. Unlike relatively globalized regimes, technological trajectories are organized locally in "landscapes." A resulting "duality of structure" (Giddens, 1979) between the historical organization of trajectories and evolutionary self-organization at the regime level can be expected to drive innovation cycles. Reflexive translations add a third layer of perspectives to (a) the relational analysis of observable links that shape trajectories and (b) the positional analysis of networks in terms of latent dimensions. These three operations can be studied in a single framework, but using different methodologies. Latour's first-order associations can then be analytically distinguished from second-order translations in terms of requiring other communicative competencies. The resulting operations remain infrareflexively nested, and can therefore be used for innovative reconstructions of previously constructed boundaries.
  10. Leydesdorff, L.; Perevodchikov, E.; Uvarov, A.: Measuring triple-helix synergy in the Russian innovation systems at regional, provincial, and national levels (2015) 0.00
    0.0021034614 = product of:
      0.012620768 = sum of:
        0.012620768 = weight(_text_:in in 1857) [ClassicSimilarity], result of:
          0.012620768 = score(doc=1857,freq=16.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.21253976 = fieldWeight in 1857, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1857)
      0.16666667 = coord(1/6)
    
    Abstract
    We measure synergy for the Russian national, provincial, and regional innovation systems as reduction of uncertainty using mutual information among the 3 distributions of firm sizes, technological knowledge bases of firms, and geographical locations. Half a million units of data at firm level in 2011 were obtained from the OrbisT database of Bureau Van Dijk. The firm level data were aggregated at the levels of 8 Federal Districts, the regional level of 83 Federal Subjects, and the single level of the Russian Federation. Not surprisingly, the knowledge base of the economy is concentrated in the Moscow region (22.8%) and Saint Petersburg (4.0%). Except in Moscow itself, high-tech manufacturing does not add synergy to any other unit at any of the various levels of geographical granularity; instead it disturbs regional coordination. Knowledge-intensive services (KIS; including laboratories) contribute to the synergy in all Federal Districts (except the North-Caucasian Federal District), but only in 30 of the 83 Federal Subjects. The synergy in KIS is concentrated in centers of administration. The knowledge-intensive services (which are often state affiliated) provide backbone to an emerging knowledge-based economy at the level of Federal Districts, but the economy is otherwise not knowledge based (except for the Moscow region).
  11. Leydesdorff, L.; Nooy, W. de: Can "hot spots" in the sciences be mapped using the dynamics of aggregated journal-journal citation relations (2017) 0.00
    0.0021034614 = product of:
      0.012620768 = sum of:
        0.012620768 = weight(_text_:in in 3328) [ClassicSimilarity], result of:
          0.012620768 = score(doc=3328,freq=16.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.21253976 = fieldWeight in 3328, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3328)
      0.16666667 = coord(1/6)
    
    Abstract
    Using 3 years of the Journal Citation Reports (2011, 2012, and 2013), indicators of transitions in 2012 (between 2011 and 2013) were studied using methodologies based on entropy statistics. Changes can be indicated at the level of journals using the margin totals of entropy production along the row or column vectors, but also at the level of links among journals by importing the transition matrices into network analysis and visualization programs (and using community-finding algorithms). Seventy-four journals were flagged in terms of discontinuous changes in their citations, but 3,114 journals were involved in "hot" links. Most of these links are embedded in a main component; 78 clusters (containing 172 journals) were flagged as potential "hot spots" emerging at the network level. An additional finding was that PLoS ONE introduced a new communication dynamic into the database. The limitations of the methodology were elaborated using an example. The results of the study indicate where developments in the citation dynamics can be considered as significantly unexpected. This can be used as heuristic information, but what a "hot spot" in terms of the entropy statistics of aggregated citation relations means substantively can be expected to vary from case to case.
  12. Leydesdorff, L.; Ivanova, I.: ¬The measurement of "interdisciplinarity" and "synergy" in scientific and extra-scientific collaborations (2021) 0.00
    0.0021034614 = product of:
      0.012620768 = sum of:
        0.012620768 = weight(_text_:in in 208) [ClassicSimilarity], result of:
          0.012620768 = score(doc=208,freq=16.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.21253976 = fieldWeight in 208, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=208)
      0.16666667 = coord(1/6)
    
    Abstract
    Problem solving often requires crossing boundaries, such as those between disciplines. When policy-makers call for "interdisciplinarity," however, they often mean "synergy." Synergy is generated when the whole offers more possibilities than the sum of its parts. An increase in the number of options above the sum of the options in subsets can be measured as redundancy; that is, the number of not-yet-realized options. The number of options available to an innovation system for realization can be as decisive for the system's survival as the historically already-realized innovations. Unlike "interdisciplinarity," "synergy" can also be generated in sectorial or geographical collaborations. The measurement of "synergy," however, requires a methodology different from the measurement of "interdisciplinarity." In this study, we discuss recent advances in the operationalization and measurement of "interdisciplinarity," and propose a methodology for measuring "synergy" based on information theory. The sharing of meanings attributed to information from different perspectives can increase redundancy. Increasing redundancy reduces the relative uncertainty, for example, in niches. The operationalization of the two concepts-"interdisciplinarity" and "synergy"-as different and partly overlapping indicators allows for distinguishing between the effects and the effectiveness of science-policy interventions in research priorities.
  13. Marx, W.; Bornmann, L.; Barth, A.; Leydesdorff, L.: Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS) (2014) 0.00
    0.0020823204 = product of:
      0.012493922 = sum of:
        0.012493922 = weight(_text_:in in 1238) [ClassicSimilarity], result of:
          0.012493922 = score(doc=1238,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.21040362 = fieldWeight in 1238, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1238)
      0.16666667 = coord(1/6)
    
    Abstract
    We introduce the quantitative method named "Reference Publication Year Spectroscopy" (RPYS). With this method one can determine the historical roots of research fields and quantify their impact on current research. RPYS is based on the analysis of the frequency with which references are cited in the publications of a specific research field in terms of the publication years of these cited references. The origins show up in the form of more or less pronounced peaks mostly caused by individual publications that are cited particularly frequently. In this study, we use research on graphene and on solar cells to illustrate how RPYS functions, and what results it can deliver.
  14. Leydesdorff, L.: Betweenness centrality as an indicator of the interdisciplinarity of scientific journals (2007) 0.00
    0.0019955188 = product of:
      0.011973113 = sum of:
        0.011973113 = weight(_text_:in in 453) [ClassicSimilarity], result of:
          0.011973113 = score(doc=453,freq=10.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.20163295 = fieldWeight in 453, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=453)
      0.16666667 = coord(1/6)
    
    Abstract
    In addition to science citation indicators of journals like impact and immediacy, social network analysis provides a set of centrality measures like degree, betweenness, and closeness centrality. These measures are first analyzed for the entire set of 7,379 journals included in the Journal Citation Reports of the Science Citation Index and the Social Sciences Citation Index 2004 (Thomson ISI, Philadelphia, PA), and then also in relation to local citation environments that can be considered as proxies of specialties and disciplines. Betweenness centrality is shown to be an indicator of the interdisciplinarity of journals, but only in local citation environments and after normalization; otherwise, the influence of degree centrality (size) overshadows the betweenness-centrality measure. The indicator is applied to a variety of citation environments, including policy-relevant ones like biotechnology and nanotechnology. The values of the indicator remain sensitive to the delineations of the set because of the indicator's local character. Maps showing interdisciplinarity of journals in terms of betweenness centrality can be drawn using information about journal citation environments, which is available online.
  15. Leydesdorff, L.: On the normalization and visualization of author co-citation data : Salton's Cosine versus the Jaccard index (2008) 0.00
    0.0019955188 = product of:
      0.011973113 = sum of:
        0.011973113 = weight(_text_:in in 1341) [ClassicSimilarity], result of:
          0.011973113 = score(doc=1341,freq=10.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.20163295 = fieldWeight in 1341, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1341)
      0.16666667 = coord(1/6)
    
    Abstract
    The debate about which similarity measure one should use for the normalization in the case of Author Co-citation Analysis (ACA) is further complicated when one distinguishes between the symmetrical co-citation - or, more generally, co-occurrence - matrix and the underlying asymmetrical citation - occurrence - matrix. In the Web environment, the approach of retrieving original citation data is often not feasible. In that case, one should use the Jaccard index, but preferentially after adding the number of total citations (i.e., occurrences) on the main diagonal. Unlike Salton's cosine and the Pearson correlation, the Jaccard index abstracts from the shape of the distributions and focuses only on the intersection and the sum of the two sets. Since the correlations in the co-occurrence matrix may be spurious, this property of the Jaccard index can be considered as an advantage in this case.
  16. Leydesdorff, L.; Probst, C.: ¬The delineation of an interdisciplinary specialty in terms of a journal set : the case of communication studies (2009) 0.00
    0.0019955188 = product of:
      0.011973113 = sum of:
        0.011973113 = weight(_text_:in in 2952) [ClassicSimilarity], result of:
          0.011973113 = score(doc=2952,freq=10.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.20163295 = fieldWeight in 2952, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2952)
      0.16666667 = coord(1/6)
    
    Abstract
    A journal set in an interdisciplinary or newly developing area can be determined by including the journals classified under the most relevant ISI Subject Categories into a journal-journal citation matrix. Despite the fuzzy character of borders, factor analysis of the citation patterns enables us to delineate the specific set by discarding the noise. This methodology is illustrated using communication studies as a hybrid development between political science and social psychology. The development can be visualized using animations which support the claim that a specific journal set in communication studies is increasingly developing, notably in the being cited patterns. The resulting set of 28 journals in communication studies is smaller and more focused than the 45 journals classified by the ISI Subject Categories as Communication. The proposed method is tested for its robustness by extending the relevant environments to sets including many more journals.
  17. Leydesdorff, L.; Strand, Oe.: ¬The Swedish system of innovation : regional synergies in a knowledge-based economy (2013) 0.00
    0.0019955188 = product of:
      0.011973113 = sum of:
        0.011973113 = weight(_text_:in in 1047) [ClassicSimilarity], result of:
          0.011973113 = score(doc=1047,freq=10.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.20163295 = fieldWeight in 1047, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1047)
      0.16666667 = coord(1/6)
    
    Abstract
    Based on the complete set of firm data for Sweden (N = 1,187,421; November 2011), we analyze the mutual information among the geographical, technological, and organizational distributions in terms of synergies at regional and national levels. Using this measure, the interaction among three dimensions can become negative and thus indicate a net export of uncertainty by a system or, in other words, synergy in how knowledge functions are distributed over the carriers. Aggregation at the regional level (NUTS3) of the data organized at the municipal level (NUTS5) shows that 48.5% of the regional synergy is provided by the 3 metropolitan regions of Stockholm, Gothenburg, and Malmö/Lund. Sweden can be considered a centralized and hierarchically organized system. Our results accord with other statistics, but this triple helix indicator measures synergy more specifically and quantitatively. The analysis also provides us with validation for using this measure in previous studies of more regionalized systems of innovation (such as Hungary and Norway).
  18. Leydesdorff, L.; Heimeriks, G.: ¬The self-organization of the European information society : the case of "biotechnology" (2001) 0.00
    0.0019676082 = product of:
      0.011805649 = sum of:
        0.011805649 = weight(_text_:in in 6524) [ClassicSimilarity], result of:
          0.011805649 = score(doc=6524,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.19881277 = fieldWeight in 6524, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6524)
      0.16666667 = coord(1/6)
    
    Abstract
    Fields of technoscience like biotechnology develop in a network mode: disciplinary insights from different backgrounds are recombined as competing innovation systems are continuously reshaped. The ongoing process of integration at the European level generates an additional network of transnational collaborations. Using the title words of scientific publications in five core journals of biotechnology, multivariate analysis is used to distinguish between the intellectual organization of the publications in terms of title words and the institutional network in terms of addresses of documents. The interaction among the representation of intellectual space in terms of words and co-words, and the potentially European network system is compared with the document sets with American and Japanese addresses. The European system can also be decomposed in terms of the contributions of member states. Whereas a European vocabulary can be made visible at the global level, this communality disappears by this decomposition. The network effect at the European level can be considered as institutional more than cognitive
    Footnote
    Vgl. auch die Stellungnahme von P. van den Besselaar: Empirical evidence of self-organization? in: JASIST 54(2003) no.1, S.87-90.
  19. Leydesdorff, L.; Bornmann, L.: Integrated impact indicators compared with impact factors : an alternative research design with policy implications (2011) 0.00
    0.0019676082 = product of:
      0.011805649 = sum of:
        0.011805649 = weight(_text_:in in 4919) [ClassicSimilarity], result of:
          0.011805649 = score(doc=4919,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.19881277 = fieldWeight in 4919, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4919)
      0.16666667 = coord(1/6)
    
    Abstract
    In bibliometrics, the association of "impact" with central-tendency statistics is mistaken. Impacts add up, and citation curves therefore should be integrated instead of averaged. For example, the journals MIS Quarterly and Journal of the American Society for Information Science and Technology differ by a factor of 2 in terms of their respective impact factors (IF), but the journal with the lower IF has the higher impact. Using percentile ranks (e.g., top-1%, top-10%, etc.), an Integrated Impact Indicator (I3) can be based on integration of the citation curves, but after normalization of the citation curves to the same scale. The results across document sets can be compared as percentages of the total impact of a reference set. Total number of citations, however, should not be used instead because the shape of the citation curves is then not appreciated. I3 can be applied to any document set and any citation window. The results of the integration (summation) are fully decomposable in terms of journals or institutional units such as nations, universities, and so on because percentile ranks are determined at the paper level. In this study, we first compare I3 with IFs for the journals in two Institute for Scientific Information subject categories ("Information Science & Library Science" and "Multidisciplinary Sciences"). The library and information science set is additionally decomposed in terms of nations. Policy implications of this possible paradigm shift in citation impact analysis are specified.
  20. Leydesdorff, L.; Nerghes, A.: Co-word maps and topic modeling : a comparison using small and medium-sized corpora (N?<?1.000) (2017) 0.00
    0.0019676082 = product of:
      0.011805649 = sum of:
        0.011805649 = weight(_text_:in in 3538) [ClassicSimilarity], result of:
          0.011805649 = score(doc=3538,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.19881277 = fieldWeight in 3538, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3538)
      0.16666667 = coord(1/6)
    
    Abstract
    Induced by "big data," "topic modeling" has become an attractive alternative to mapping co-words in terms of co-occurrences and co-absences using network techniques. Does topic modeling provide an alternative for co-word mapping in research practices using moderately sized document collections? We return to the word/document matrix using first a single text with a strong argument ("The Leiden Manifesto") and then upscale to a sample of moderate size (n?=?687) to study the pros and cons of the two approaches in terms of the resulting possibilities for making semantic maps that can serve an argument. The results from co-word mapping (using two different routines) versus topic modeling are significantly uncorrelated. Whereas components in the co-word maps can easily be designated, the topic models provide sets of words that are very differently organized. In these samples, the topic models seem to reveal similarities other than semantic ones (e.g., linguistic ones). In other words, topic modeling does not replace co-word mapping in small and medium-sized sets; but the paper leaves open the possibility that topic modeling would work well for the semantic mapping of large sets.