Search (2 results, page 1 of 1)

  • × author_ss:"Liang, L."
  • × author_ss:"Egghe, L."
  1. Egghe, L.; Liang, L.; Rousseau, R.: ¬A relation between h-index and impact factor in the power-law model (2009) 0.00
    0.0020609628 = product of:
      0.012365777 = sum of:
        0.012365777 = weight(_text_:in in 6759) [ClassicSimilarity], result of:
          0.012365777 = score(doc=6759,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.2082456 = fieldWeight in 6759, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=6759)
      0.16666667 = coord(1/6)
    
    Abstract
    Using a power-law model, the two best-known topics in citation analysis, namely the impact factor and the Hirsch index, are unified into one relation (not a function). The validity of our model is, at least in a qualitative way, confirmed by real data.
  2. Egghe, L.; Liang, L.; Rousseau, R.: Fundamental properties of rhythm sequences (2008) 0.00
    0.0014724231 = product of:
      0.008834538 = sum of:
        0.008834538 = weight(_text_:in in 1965) [ClassicSimilarity], result of:
          0.008834538 = score(doc=1965,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14877784 = fieldWeight in 1965, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1965)
      0.16666667 = coord(1/6)
    
    Abstract
    Fundamental mathematical properties of rhythm sequences are studied. In particular, a set of three axioms for valid rhythm indicators is proposed, and it is shown that the R-indicator satisfies only two out of three but that the R-indicator satisfies all three. This fills a critical, logical gap in the study of these indicator sequences. Matrices leading to a constant R-sequence are called baseline matrices. They are characterized as matrices with constant w-year diachronous impact factors. The relation with classical impact factors is clarified. Using regression analysis matrices with a rhythm sequence that is on average equal to 1 (smaller than 1, larger than 1) are characterized.