Search (2 results, page 1 of 1)

  • × author_ss:"Shin, D."
  • × theme_ss:"Computerlinguistik"
  1. Keselman, A.; Rosemblat, G.; Kilicoglu, H.; Fiszman, M.; Jin, H.; Shin, D.; Rindflesch, T.C.: Adapting semantic natural language processing technology to address information overload in influenza epidemic management (2010) 0.00
    0.001821651 = product of:
      0.010929906 = sum of:
        0.010929906 = weight(_text_:in in 1312) [ClassicSimilarity], result of:
          0.010929906 = score(doc=1312,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18406484 = fieldWeight in 1312, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1312)
      0.16666667 = coord(1/6)
    
    Abstract
    The explosion of disaster health information results in information overload among response professionals. The objective of this project was to determine the feasibility of applying semantic natural language processing (NLP) technology to addressing this overload. The project characterizes concepts and relationships commonly used in disaster health-related documents on influenza pandemics, as the basis for adapting an existing semantic summarizer to the domain. Methods include human review and semantic NLP analysis of a set of relevant documents. This is followed by a pilot test in which two information specialists use the adapted application for a realistic information-seeking task. According to the results, the ontology of influenza epidemics management can be described via a manageable number of semantic relationships that involve concepts from a limited number of semantic types. Test users demonstrate several ways to engage with the application to obtain useful information. This suggests that existing semantic NLP algorithms can be adapted to support information summarization and visualization in influenza epidemics and other disaster health areas. However, additional research is needed in the areas of terminology development (as many relevant relationships and terms are not part of existing standardized vocabularies), NLP, and user interface design.
  2. Rosemblat, G.; Resnick, M.P.; Auston, I.; Shin, D.; Sneiderman, C.; Fizsman, M.; Rindflesch, T.C.: Extending SemRep to the public health domain (2013) 0.00
    0.0012620769 = product of:
      0.0075724614 = sum of:
        0.0075724614 = weight(_text_:in in 2096) [ClassicSimilarity], result of:
          0.0075724614 = score(doc=2096,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.12752387 = fieldWeight in 2096, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2096)
      0.16666667 = coord(1/6)
    
    Abstract
    We describe the use of a domain-independent method to extend a natural language processing (NLP) application, SemRep (Rindflesch, Fiszman, & Libbus, 2005), based on the knowledge sources afforded by the Unified Medical Language System (UMLS®; Humphreys, Lindberg, Schoolman, & Barnett, 1998) to support the area of health promotion within the public health domain. Public health professionals require good information about successful health promotion policies and programs that might be considered for application within their own communities. Our effort seeks to improve access to relevant information for the public health profession, to help those in the field remain an information-savvy workforce. Natural language processing and semantic techniques hold promise to help public health professionals navigate the growing ocean of information by organizing and structuring this knowledge into a focused public health framework paired with a user-friendly visualization application as a way to summarize results of PubMed® searches in this field of knowledge.