Search (29 results, page 2 of 2)

  • × author_ss:"Szostak, R."
  1. Szostak, R.; Gnoli, C.; López-Huertas, M.: Interdisciplinary knowledge organization 0.00
    0.0015740865 = product of:
      0.009444519 = sum of:
        0.009444519 = weight(_text_:in in 3804) [ClassicSimilarity], result of:
          0.009444519 = score(doc=3804,freq=14.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.15905021 = fieldWeight in 3804, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=3804)
      0.16666667 = coord(1/6)
    
    Abstract
    This book proposes a novel approach to classification, discusses its myriad advantages, and outlines how such an approach to classification can best be pursued. It encourages a collaborative effort toward the detailed development of such a classification. This book is motivated by the increased importance of interdisciplinary scholarship in the academy, and the widely perceived shortcomings of existing knowledge organization schemes in serving interdisciplinary scholarship. It is designed for scholars of classification research, knowledge organization, the digital environment, and interdisciplinarity itself. The approach recommended blends a general classification with domain-specific classification practices. The book reaches a set of very strong conclusions:
    -Existing classification systems serve interdisciplinary research and teaching poorly. -A novel approach to classification, grounded in the phenomena studied rather than disciplines, would serve interdisciplinary scholarship much better. It would also have advantages for disciplinary scholarship. The productivity of scholarship would thus be increased. -This novel approach is entirely feasible. Various concerns that might be raised can each be addressed. The broad outlines of what a new classification would look like are developed. -This new approach might serve as a complement to or a substitute for existing classification systems. -Domain analysis can and should be employed in the pursuit of a general classification. This will be particularly important with respect to interdisciplinary domains. -Though the impetus for this novel approach comes from interdisciplinarity, it is also better suited to the needs of the Semantic Web, and a digital environment more generally. Though the primary focus of the book is on classification systems, most chapters also address how the analysis could be extended to thesauri and ontologies. The possibility of a universal thesaurus is explored. The classification proposed has many of the advantages sought in ontologies for the Semantic Web. The book is therefore of interest to scholars working in these areas as well.
    Footnote
    Rez, in JASIST 68(2017) no.9, S.2287-2289 (José Augusto Guimarães)
  2. Szostak, R.: ¬A schema for unifying human science : interdisciplinary perspectives on culture (2003) 0.00
    0.0015457221 = product of:
      0.009274333 = sum of:
        0.009274333 = weight(_text_:in in 803) [ClassicSimilarity], result of:
          0.009274333 = score(doc=803,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1561842 = fieldWeight in 803, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=803)
      0.16666667 = coord(1/6)
    
    Footnote
    Rez. in: KO 39(2012) no.4, S.300-303 (M.J. Fox) Vgl. auch: Szostak, R.: Speaking truth to power in classification: response to Fox's review of my work; KO 39:4, 300. In: Knowledge organization. 40(2013) no.1, S.76-77.
  3. Szostak, R.: Complex concepts into basic concepts (2011) 0.00
    0.0014873719 = product of:
      0.008924231 = sum of:
        0.008924231 = weight(_text_:in in 4926) [ClassicSimilarity], result of:
          0.008924231 = score(doc=4926,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.15028831 = fieldWeight in 4926, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4926)
      0.16666667 = coord(1/6)
    
    Abstract
    Interdisciplinary communication, and thus the rate of progress in scholarly understanding, would be greatly enhanced if scholars had access to a universal classification of documents or ideas not grounded in particular disciplines or cultures. Such a classification is feasible if complex concepts can be understood as some combination of more basic concepts. There appear to be five main types of concept theory in the philosophical literature. Each provides some support for the idea of breaking complex into basic concepts that can be understood across disciplines or cultures, but each has detractors. None of these criticisms represents a substantive obstacle to breaking complex concepts into basic concepts within information science. Can we take the subject entries in existing universal but discipline-based classifications, and break these into a set of more basic concepts that can be applied across disciplinary classes? The author performs this sort of analysis for Dewey classes 300 to 339.9. This analysis will serve to identify the sort of 'basic concepts' that would lie at the heart of a truly universal classification. There are two key types of basic concept: the things we study (individuals, rocks, trees), and the relationships among these (talking, moving, paying).
  4. Szostak, R.: Classifying science : phenomena, data, theory, method, practice (2004) 0.00
    0.0014799163 = product of:
      0.008879498 = sum of:
        0.008879498 = weight(_text_:in in 325) [ClassicSimilarity], result of:
          0.008879498 = score(doc=325,freq=22.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14953499 = fieldWeight in 325, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0234375 = fieldNorm(doc=325)
      0.16666667 = coord(1/6)
    
    Abstract
    Classification is the essential first step in science. The study of science, as well as the practice of science, will thus benefit from a detailed classification of different types of science. In this book, science - defined broadly to include the social sciences and humanities - is first unpacked into its constituent elements: the phenomena studied, the data used, the theories employed, the methods applied, and the practices of scientists. These five elements are then classified in turn. Notably, the classifications of both theory types and methods allow the key strengths and weaknesses of different theories and methods to be readily discerned and compared. Connections across classifications are explored: should certain theories or phenomena be investigated only with certain methods? What is the proper function and form of scientific paradigms? Are certain common errors and biases in scientific practice associated with particular phenomena, data, theories, or methods? The classifications point to several ways of improving both specialized and interdisciplinary research and teaching, and especially of enhancing communication across communities of scholars. The classifications also support a superior system of document classification that would allow searches by theory and method used as well as causal links investigated.
    Content
    Inhalt: - Chapter 1: Classifying Science: 1.1. A Simple Classificatory Guideline - 1.2. The First "Cut" (and Plan of Work) - 1.3. Some Preliminaries - Chapter 2: Classifying Phenomena and Data: 2.1. Classifying Phenomena - 2.2. Classifying Data - Chapter 3: Classifying Theory: 3.1. Typology of Theory - 3.2. What Is a Theory? - 3.3. Evaluating Theories - 3.4. Types of Theory and the Five Types of Causation - 3.5. Classifying Individual Theories - 3.6. Advantages of a Typology of Theory - Chapter 4: Classifying Method: 4.1. Classifying Methods - 4.2. Typology of Strengths and Weaknesses of Methods - 4.3. Qualitative Versus Quantitative Analysis Revisited - 4.4. Evaluating Methods - 4.5. Classifying Particular Methods Within The Typology - 4.6. Advantages of a Typology of Methods - Chapter 5: Classifying Practice: 5.1. Errors and Biases in ScienceChapter - 5.2. Typology of (Critiques of) Scientific Practice - 5.3. Utilizing This Classification - 5.4. The Five Types of Ethical Analysis - Chapter 6: Drawing Connections Across These Classifications: 6.1. Theory and Method - 6.2. Theory (Method) and Phenomena (Data) - 6.3. Better Paradigms - 6.4. Critiques of Scientific Practice: Are They Correlated with Other Classifications? - Chapter 7: Classifying Scientific Documents: 7.1. Faceted or Enumerative? - 7.2. Classifying By Phenomena Studied - 7.3. Classifying By Theory Used - 7.4. Classifying By Method Used - 7.5 Links Among Subjects - 7.6. Type of Work, Language, and More - 7.7. Critiques of Scientific Practice - 7.8. Classifying Philosophy - 7.9. Evaluating the System - Chapter 8: Concluding Remarks: 8.1. The Classifications - 8.2. Advantages of These Various Classifications - 8.3. Drawing Connections Across Classifications - 8.4. Golden Mean Arguments - 8.5. Why Should Science Be Believed? - 8.6. How Can Science Be Improved? - 8.7. How Should Science Be Taught?
    Footnote
    Rez. in: KO 32(2005) no.2, S.93-95 (H. Albrechtsen): "The book deals with mapping of the structures and contents of sciences, defined broadly to include the social sciences and the humanities. According to the author, the study of science, as well as the practice of science, could benefit from a detailed classification of different types of science. The book defines five universal constituents of the sciences: phenomena, data, theories, methods and practice. For each of these constituents, the author poses five questions, in the well-known 5W format: Who, What, Where, When, Why? - with the addition of the question How? (Szostak 2003). Two objectives of the author's endeavor stand out: 1) decision support for university curriculum development across disciplines and decision support for university students at advanced levels of education in selection of appropriate courses for their projects and to support cross-disciplinary inquiry for researchers and students; 2) decision support for researchers and students in scientific inquiry across disciplines, methods and theories. The main prospective audience of this book is university curriculum developers, university students and researchers, in that order of priority. The heart of the book is the chapters unfolding the author's ideas about how to classify phenomena and data, theory, method and practice, by use of the 5W inquiry model. . . .
    Weitere Rez. in: JASIST 57(2006) no.14, S.1977-1978 (Y. Su); KO 39(2012) no.4, S.300-303 (M.J. Fox)
  5. Szostak, R.: Classfying scholarly theories and methods (2003) 0.00
    0.0014724231 = product of:
      0.008834538 = sum of:
        0.008834538 = weight(_text_:in in 2104) [ClassicSimilarity], result of:
          0.008834538 = score(doc=2104,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14877784 = fieldWeight in 2104, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2104)
      0.16666667 = coord(1/6)
    
    Abstract
    This paper develops a simple yet powerful typology of scholarly theory, based an the 5W questions: "Who?", "What?", "Where?", "When?", and "Why?". It also develops a list of the twelve distinct methods used by scholars. These are then evaluated in terms of the 5W questions. Classifying theory types and methods allows scholars and students to better appreciate the advantages and disadvantages of different theory types and methods. Classifications of theory and method can and should be important components of a system for classifying scholarly documents. Researchers and students are presently limited in their ability to search by theory type or method. As a result, scholars often "re-invent" previous research of which they were unaware.
  6. Szostak, R.; Smiraglia, R.P.: Comparative approaches to interdisciplinary KOSs : use cases of converting UDC to BCC (2017) 0.00
    0.0014724231 = product of:
      0.008834538 = sum of:
        0.008834538 = weight(_text_:in in 3874) [ClassicSimilarity], result of:
          0.008834538 = score(doc=3874,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.14877784 = fieldWeight in 3874, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3874)
      0.16666667 = coord(1/6)
    
    Abstract
    We take a small sample of works and compare how these are classified within both the Universal Decimal Classification and the Basic concepts Classification. We examine notational length, expressivity, network effects, and the number of subject strings. One key finding is that BCC typically synthesizes many more terms than UDC in classifying a particular document - but the length of classificatory notations is roughly equivalent for the two KOSs. BCC captures documents with fewer subject strings (generally one) but these are more complex.
    Content
    Beitrag bei: NASKO 2017: Visualizing Knowledge Organization: Bringing Focus to Abstract Realities. The sixth North American Symposium on Knowledge Organization (NASKO 2017), June 15-16, 2017, in Champaign, IL, USA.
  7. Szostak, R.: Interdisciplinarity and the classification of scholarly documents by phenomena, theories and methods (2007) 0.00
    0.0011898974 = product of:
      0.0071393843 = sum of:
        0.0071393843 = weight(_text_:in in 1135) [ClassicSimilarity], result of:
          0.0071393843 = score(doc=1135,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.120230645 = fieldWeight in 1135, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=1135)
      0.16666667 = coord(1/6)
    
    Source
    ¬La interdisciplinariedad y la transdisciplinariedad en la organización del conocimiento científico : actas del VIII Congreso ISKO-España, León, 18, 19 y 20 de Abril de 2007 : Interdisciplinarity and transdisciplinarity in the organization of scientific knowledge. Ed.: B. Rodriguez Bravo u. M.L Alvite Diez
  8. Szostak, R.: Toward a classification of relationships (2012) 0.00
    0.0010411602 = product of:
      0.006246961 = sum of:
        0.006246961 = weight(_text_:in in 131) [ClassicSimilarity], result of:
          0.006246961 = score(doc=131,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10520181 = fieldWeight in 131, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=131)
      0.16666667 = coord(1/6)
    
    Abstract
    Several attempts have been made to develop a classification of relationships, but none of these have been widely accepted or applied within information science. It would seem that information scientists, while appreciating the potential value of a classification of relationships, have found all previous classifications to be too complicated in application relative to the benefits they provide. This paper begins by reviewing previous attempts and drawing lessons from these. It then surveys a range of sources within and beyond the field of knowledge organization that can together provide the basis for the development of a novel classification of relationships. One critical insight is that relationships governing causation/influence should be accorded priority.
  9. Gnoli, C.; Pullman, T.; Cousson, P.; Merli, G.; Szostak, R.: Representing the structural elements of a freely faceted classification (2011) 0.00
    7.4368593E-4 = product of:
      0.0044621155 = sum of:
        0.0044621155 = weight(_text_:in in 4825) [ClassicSimilarity], result of:
          0.0044621155 = score(doc=4825,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.07514416 = fieldWeight in 4825, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4825)
      0.16666667 = coord(1/6)
    
    Abstract
    Freely faceted classifications allow for free combination of concepts across all knowledge domains, and for sorting of the resulting compound classmarks. Starting from work by the Classification Research Group, the Integrative Levels Classification (ILC) project has produced a first edition of a general freely faceted scheme. The system is managed as a MySQL database, and can be browsed through a Web interface. The ILC database structure provides a case for identifying and representing the structural elements of any freely faceted classification. These belong to both the notational and the verbal planes. Notational elements include: arrays, chains, deictics, facets, foci, place of definition of foci, examples of combinations, subclasses of a faceted class, groupings, related classes; verbal elements include: main caption, synonyms, descriptions, included terms, related terms, notes. Encoding of some of these elements in an international mark-up format like SKOS can be problematic, especially as this does not provide for faceted structures, although approximate SKOS equivalents are identified for most of them.