Search (160 results, page 8 of 8)

  • × theme_ss:"Data Mining"
  1. Bella, A. La; Fronzetti Colladon, A.; Battistoni, E.; Castellan, S.; Francucci, M.: Assessing perceived organizational leadership styles through twitter text mining (2018) 0.00
    0.0012620769 = product of:
      0.0075724614 = sum of:
        0.0075724614 = weight(_text_:in in 2400) [ClassicSimilarity], result of:
          0.0075724614 = score(doc=2400,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.12752387 = fieldWeight in 2400, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2400)
      0.16666667 = coord(1/6)
    
    Abstract
    We propose a text classification tool based on support vector machines for the assessment of organizational leadership styles, as appearing to Twitter users. We collected Twitter data over 51 days, related to the first 30 Italian organizations in the 2015 ranking of Forbes Global 2000-out of which we selected the five with the most relevant volumes of tweets. We analyzed the communication of the company leaders, together with the dialogue among the stakeholders of each company, to understand the association with perceived leadership styles and dimensions. To assess leadership profiles, we referred to the 10-factor model developed by Barchiesi and La Bella in 2007. We maintain the distinctiveness of the approach we propose, as it allows a rapid assessment of the perceived leadership capabilities of an enterprise, as they emerge from its social media interactions. It can also be used to show how companies respond and manage their communication when specific events take place, and to assess their stakeholder's reactions.
  2. Fayyad, U.M.; Djorgovski, S.G.; Weir, N.: From digitized images to online catalogs : data ming a sky server (1996) 0.00
    0.0011898974 = product of:
      0.0071393843 = sum of:
        0.0071393843 = weight(_text_:in in 6625) [ClassicSimilarity], result of:
          0.0071393843 = score(doc=6625,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.120230645 = fieldWeight in 6625, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=6625)
      0.16666667 = coord(1/6)
    
    Abstract
    Offers a data mining approach based on machine learning classification methods to the problem of automated cataloguing of online databases of digital images resulting from sky surveys. The SKICAT system automates the reduction and analysis of 3 terabytes of images expected to contain about 2 billion sky objects. It offers a solution to problems associated with the analysis of large data sets in science
  3. Wattenberg, M.; Viégas, F.; Johnson, I.: How to use t-SNE effectively (2016) 0.00
    0.0011898974 = product of:
      0.0071393843 = sum of:
        0.0071393843 = weight(_text_:in in 3887) [ClassicSimilarity], result of:
          0.0071393843 = score(doc=3887,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.120230645 = fieldWeight in 3887, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=3887)
      0.16666667 = coord(1/6)
    
    Abstract
    Although extremely useful for visualizing high-dimensional data, t-SNE plots can sometimes be mysterious or misleading. By exploring how it behaves in simple cases, we can learn to use it more effectively. We'll walk through a series of simple examples to illustrate what t-SNE diagrams can and cannot show. The t-SNE technique really is useful-but only if you know how to interpret it.
  4. Shi, X.; Yang, C.C.: Mining related queries from Web search engine query logs using an improved association rule mining model (2007) 0.00
    0.0010517307 = product of:
      0.006310384 = sum of:
        0.006310384 = weight(_text_:in in 597) [ClassicSimilarity], result of:
          0.006310384 = score(doc=597,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10626988 = fieldWeight in 597, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=597)
      0.16666667 = coord(1/6)
    
    Abstract
    With the overwhelming volume of information, the task of finding relevant information on a given topic on the Web is becoming increasingly difficult. Web search engines hence become one of the most popular solutions available on the Web. However, it has never been easy for novice users to organize and represent their information needs using simple queries. Users have to keep modifying their input queries until they get expected results. Therefore, it is often desirable for search engines to give suggestions on related queries to users. Besides, by identifying those related queries, search engines can potentially perform optimizations on their systems, such as query expansion and file indexing. In this work we propose a method that suggests a list of related queries given an initial input query. The related queries are based in the query log of previously submitted queries by human users, which can be identified using an enhanced model of association rules. Users can utilize the suggested related queries to tune or redirect the search process. Our method not only discovers the related queries, but also ranks them according to the degree of their relatedness. Unlike many other rival techniques, it also performs reasonably well on less frequent input queries.
  5. Wei, C.-P.; Lee, Y.-H.; Chiang, Y.-S.; Chen, C.-T.; Yang, C.C.C.: Exploiting temporal characteristics of features for effectively discovering event episodes from news corpora (2014) 0.00
    0.0010517307 = product of:
      0.006310384 = sum of:
        0.006310384 = weight(_text_:in in 1225) [ClassicSimilarity], result of:
          0.006310384 = score(doc=1225,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10626988 = fieldWeight in 1225, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1225)
      0.16666667 = coord(1/6)
    
    Abstract
    An organization performing environmental scanning generally monitors or tracks various events concerning its external environment. One of the major resources for environmental scanning is online news documents, which are readily accessible on news websites or infomediaries. However, the proliferation of the World Wide Web, which increases information sources and improves information circulation, has vastly expanded the amount of information to be scanned. Thus, it is essential to develop an effective event episode discovery mechanism to organize news documents pertaining to an event of interest. In this study, we propose two new metrics, Term Frequency × Inverse Document FrequencyTempo (TF×IDFTempo) and TF×Enhanced-IDFTempo, and develop a temporal-based event episode discovery (TEED) technique that uses the proposed metrics for feature selection and document representation. Using a traditional TF×IDF-based hierarchical agglomerative clustering technique as a performance benchmark, our empirical evaluation reveals that the proposed TEED technique outperforms its benchmark, as measured by cluster recall and cluster precision. In addition, the use of TF×Enhanced-IDFTempo significantly improves the effectiveness of event episode discovery when compared with the use of TF×IDFTempo.
  6. Goldberg, D.M.; Zaman, N.; Brahma, A.; Aloiso, M.: Are mortgage loan closing delay risks predictable? : A predictive analysis using text mining on discussion threads (2022) 0.00
    0.0010517307 = product of:
      0.006310384 = sum of:
        0.006310384 = weight(_text_:in in 501) [ClassicSimilarity], result of:
          0.006310384 = score(doc=501,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10626988 = fieldWeight in 501, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=501)
      0.16666667 = coord(1/6)
    
    Abstract
    Loan processors and underwriters at mortgage firms seek to gather substantial supporting documentation to properly understand and model loan risks. In doing so, loan originations become prone to closing delays, risking client dissatisfaction and consequent revenue losses. We collaborate with a large national mortgage firm to examine the extent to which these delays are predictable, using internal discussion threads to prioritize interventions for loans most at risk. Substantial work experience is required to predict delays, and we find that even highly trained employees have difficulty predicting delays by reviewing discussion threads. We develop an array of methods to predict loan delays. We apply four modern out-of-the-box sentiment analysis techniques, two dictionary-based and two rule-based, to predict delays. We contrast these approaches with domain-specific approaches, including firm-provided keyword searches and "smoke terms" derived using machine learning. Performance varies widely across sentiment approaches; while some sentiment approaches prioritize the top-ranking records well, performance quickly declines thereafter. The firm-provided keyword searches perform at the rate of random chance. We observe that the domain-specific smoke term approaches consistently outperform other approaches and offer better prediction than loan and borrower characteristics. We conclude that text mining solutions would greatly assist mortgage firms in delay prevention.
  7. Trybula, W.J.: Data mining and knowledge discovery (1997) 0.00
    0.0010411602 = product of:
      0.006246961 = sum of:
        0.006246961 = weight(_text_:in in 2300) [ClassicSimilarity], result of:
          0.006246961 = score(doc=2300,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10520181 = fieldWeight in 2300, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2300)
      0.16666667 = coord(1/6)
    
    Abstract
    State of the art review of the recently developed concepts of data mining (defined as the automated process of evaluating data and finding relationships) and knowledge discovery (defined as the automated process of extracting information, especially unpredicted relationships or previously unknown patterns among the data) with particular reference to numerical data. Includes: the knowledge acquisition process; data mining; evaluation methods; and knowledge discovery. Concludes that existing work in the field are confusing because the terminology is inconsistent and poorly defined. Although methods are available for analyzing and cleaning databases, better coordinated efforts should be directed toward providing users with improved means of structuring search mechanisms to explore the data for relationships
  8. Raghavan, V.V.; Deogun, J.S.; Sever, H.: Knowledge discovery and data mining : introduction (1998) 0.00
    0.0010411602 = product of:
      0.006246961 = sum of:
        0.006246961 = weight(_text_:in in 2899) [ClassicSimilarity], result of:
          0.006246961 = score(doc=2899,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10520181 = fieldWeight in 2899, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2899)
      0.16666667 = coord(1/6)
    
    Abstract
    Defines knowledge discovery and database mining. The challenge for knowledge discovery in databases (KDD) is to automatically process large quantities of raw data, identifying the most significant and meaningful patterns, and present these as as knowledge appropriate for achieving a user's goals. Data mining is the process of deriving useful knowledge from real world databases through the application of pattern extraction techniques. Explains the goals of, and motivation for, research work on data mining. Discusses the nature of database contents, along with problems within the field of data mining
  9. Lingras, P.J.; Yao, Y.Y.: Data mining using extensions of the rough set model (1998) 0.00
    0.0010411602 = product of:
      0.006246961 = sum of:
        0.006246961 = weight(_text_:in in 2910) [ClassicSimilarity], result of:
          0.006246961 = score(doc=2910,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10520181 = fieldWeight in 2910, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2910)
      0.16666667 = coord(1/6)
    
    Abstract
    Examines basic issues of data mining using the theory of rough sets, which is a recent proposal for generalizing classical set theory. The Pawlak rough set model is based on the concept of an equivalence relation. A generalized rough set model need not be based on equivalence relation axioms. The Pawlak rough set model has been used for deriving deterministic as well as probabilistic rules froma complete database. Demonstrates that a generalised rough set model can be used for generating rules from incomplete databases. These rules are based on plausability functions proposed by Shafer. Discusses the importance of rule extraction from incomplete databases in data mining
  10. Baeza-Yates, R.; Hurtado, C.; Mendoza, M.: Improving search engines by query clustering (2007) 0.00
    0.0010411602 = product of:
      0.006246961 = sum of:
        0.006246961 = weight(_text_:in in 601) [ClassicSimilarity], result of:
          0.006246961 = score(doc=601,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10520181 = fieldWeight in 601, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=601)
      0.16666667 = coord(1/6)
    
    Abstract
    In this paper, we present a framework for clustering Web search engine queries whose aim is to identify groups of queries used to search for similar information on the Web. The framework is based on a novel term vector model of queries that integrates user selections and the content of selected documents extracted from the logs of a search engine. The query representation obtained allows us to treat query clustering similarly to standard document clustering. We study the application of the clustering framework to two problems: relevance ranking boosting and query recommendation. Finally, we evaluate with experiments the effectiveness of our approach.
  11. Liu, W.; Weichselbraun, A.; Scharl, A.; Chang, E.: Semi-automatic ontology extension using spreading activation (2005) 0.00
    0.0010411602 = product of:
      0.006246961 = sum of:
        0.006246961 = weight(_text_:in in 3028) [ClassicSimilarity], result of:
          0.006246961 = score(doc=3028,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10520181 = fieldWeight in 3028, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3028)
      0.16666667 = coord(1/6)
    
    Abstract
    This paper describes a system to semi-automatically extend and refine ontologies by mining textual data from the Web sites of international online media. Expanding a seed ontology creates a semantic network through co-occurrence analysis, trigger phrase analysis, and disambiguation based on the WordNet lexical dictionary. Spreading activation then processes this semantic network to find the most probable candidates for inclusion in an extended ontology. Approaches to identifying hierarchical relationships such as subsumption, head noun analysis and WordNet consultation are used to confirm and classify the found relationships. Using a seed ontology on "climate change" as an example, this paper demonstrates how spreading activation improves the result by naturally integrating the mentioned methods.
  12. Miao, Q.; Li, Q.; Zeng, D.: Fine-grained opinion mining by integrating multiple review sources (2010) 0.00
    0.0010411602 = product of:
      0.006246961 = sum of:
        0.006246961 = weight(_text_:in in 4104) [ClassicSimilarity], result of:
          0.006246961 = score(doc=4104,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10520181 = fieldWeight in 4104, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4104)
      0.16666667 = coord(1/6)
    
    Abstract
    With the rapid development of Web 2.0, online reviews have become extremely valuable sources for mining customers' opinions. Fine-grained opinion mining has attracted more and more attention of both applied and theoretical research. In this article, the authors study how to automatically mine product features and opinions from multiple review sources. Specifically, they propose an integration strategy to solve the issue. Within the integration strategy, the authors mine domain knowledge from semistructured reviews and then exploit the domain knowledge to assist product feature extraction and sentiment orientation identification from unstructured reviews. Finally, feature-opinion tuples are generated. Experimental results on real-world datasets show that the proposed approach is effective.
  13. Kong, S.; Ye, F.; Feng, L.; Zhao, Z.: Towards the prediction problems of bursting hashtags on Twitter (2015) 0.00
    0.0010411602 = product of:
      0.006246961 = sum of:
        0.006246961 = weight(_text_:in in 2338) [ClassicSimilarity], result of:
          0.006246961 = score(doc=2338,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10520181 = fieldWeight in 2338, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2338)
      0.16666667 = coord(1/6)
    
    Abstract
    Hundreds of thousands of hashtags are generated every day on Twitter. Only a few will burst and become trending topics. In this article, we provide the definition of a bursting hashtag and conduct a systematic study of a series of challenging prediction problems that span the entire life cycles of bursting hashtags. Around the problem of "how to build a system to predict bursting hashtags," we explore different types of features and present machine learning solutions. On real data sets from Twitter, experiments are conducted to evaluate the effectiveness of the proposed solutions and the contributions of features.
  14. Wang, W.M.; Cheung, C.F.; Lee, W.B.; Kwok, S.K.: Mining knowledge from natural language texts using fuzzy associated concept mapping (2008) 0.00
    0.0010304814 = product of:
      0.0061828885 = sum of:
        0.0061828885 = weight(_text_:in in 2121) [ClassicSimilarity], result of:
          0.0061828885 = score(doc=2121,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1041228 = fieldWeight in 2121, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=2121)
      0.16666667 = coord(1/6)
    
    Abstract
    Natural Language Processing (NLP) techniques have been successfully used to automatically extract information from unstructured text through a detailed analysis of their content, often to satisfy particular information needs. In this paper, an automatic concept map construction technique, Fuzzy Association Concept Mapping (FACM), is proposed for the conversion of abstracted short texts into concept maps. The approach consists of a linguistic module and a recommendation module. The linguistic module is a text mining method that does not require the use to have any prior knowledge about using NLP techniques. It incorporates rule-based reasoning (RBR) and case based reasoning (CBR) for anaphoric resolution. It aims at extracting the propositions in text so as to construct a concept map automatically. The recommendation module is arrived at by adopting fuzzy set theories. It is an interactive process which provides suggestions of propositions for further human refinement of the automatically generated concept maps. The suggested propositions are relationships among the concepts which are not explicitly found in the paragraphs. This technique helps to stimulate individual reflection and generate new knowledge. Evaluation was carried out by using the Science Citation Index (SCI) abstract database and CNET News as test data, which are well known databases and the quality of the text is assured. Experimental results show that the automatically generated concept maps conform to the outputs generated manually by domain experts, since the degree of difference between them is proportionally small. The method provides users with the ability to convert scientific and short texts into a structured format which can be easily processed by computer. Moreover, it provides knowledge workers with extra time to re-think their written text and to view their knowledge from another angle.
  15. Liu, B.: Web data mining : exploring hyperlinks, contents, and usage data (2011) 0.00
    0.0010304814 = product of:
      0.0061828885 = sum of:
        0.0061828885 = weight(_text_:in in 354) [ClassicSimilarity], result of:
          0.0061828885 = score(doc=354,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1041228 = fieldWeight in 354, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=354)
      0.16666667 = coord(1/6)
    
    Abstract
    Web mining aims to discover useful information and knowledge from the Web hyperlink structure, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is not purely an application of traditional data mining due to the semistructured and unstructured nature of the Web data and its heterogeneity. It has also developed many of its own algorithms and techniques. Liu has written a comprehensive text on Web data mining. Key topics of structure mining, content mining, and usage mining are covered both in breadth and in depth. His book brings together all the essential concepts and algorithms from related areas such as data mining, machine learning, and text processing to form an authoritative and coherent text. The book offers a rich blend of theory and practice, addressing seminal research ideas, as well as examining the technology from a practical point of view. It is suitable for students, researchers and practitioners interested in Web mining both as a learning text and a reference book. Lecturers can readily use it for classes on data mining, Web mining, and Web search. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.
  16. Perugini, S.; Ramakrishnan, N.: Mining Web functional dependencies for flexible information access (2007) 0.00
    8.9242304E-4 = product of:
      0.005354538 = sum of:
        0.005354538 = weight(_text_:in in 602) [ClassicSimilarity], result of:
          0.005354538 = score(doc=602,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.09017298 = fieldWeight in 602, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=602)
      0.16666667 = coord(1/6)
    
    Abstract
    We present an approach to enhancing information access through Web structure mining in contrast to traditional approaches involving usage mining. Specifically, we mine the hardwired hierarchical hyperlink structure of Web sites to identify patterns of term-term co-occurrences we call Web functional dependencies (FDs). Intuitively, a Web FD x -> y declares that all paths through a site involving a hyperlink labeled x also contain a hyperlink labeled y. The complete set of FDs satisfied by a site help characterize (flexible and expressive) interaction paradigms supported by a site, where a paradigm is the set of explorable sequences therein. We describe algorithms for mining FDs and results from mining several hierarchical Web sites and present several interface designs that can exploit such FDs to provide compelling user experiences.
  17. Biskri, I.; Rompré, L.: Using association rules for query reformulation (2012) 0.00
    8.9242304E-4 = product of:
      0.005354538 = sum of:
        0.005354538 = weight(_text_:in in 92) [ClassicSimilarity], result of:
          0.005354538 = score(doc=92,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.09017298 = fieldWeight in 92, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=92)
      0.16666667 = coord(1/6)
    
    Abstract
    In this paper the authors will present research on the combination of two methods of data mining: text classification and maximal association rules. Text classification has been the focus of interest of many researchers for a long time. However, the results take the form of lists of words (classes) that people often do not know what to do with. The use of maximal association rules induced a number of advantages: (1) the detection of dependencies and correlations between the relevant units of information (words) of different classes, (2) the extraction of hidden knowledge, often relevant, from a large volume of data. The authors will show how this combination can improve the process of information retrieval.
  18. Teich, E.; Degaetano-Ortlieb, S.; Fankhauser, P.; Kermes, H.; Lapshinova-Koltunski, E.: ¬The linguistic construal of disciplinarity : a data-mining approach using register features (2016) 0.00
    8.9242304E-4 = product of:
      0.005354538 = sum of:
        0.005354538 = weight(_text_:in in 3015) [ClassicSimilarity], result of:
          0.005354538 = score(doc=3015,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.09017298 = fieldWeight in 3015, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=3015)
      0.16666667 = coord(1/6)
    
    Abstract
    We analyze the linguistic evolution of selected scientific disciplines over a 30-year time span (1970s to 2000s). Our focus is on four highly specialized disciplines at the boundaries of computer science that emerged during that time: computational linguistics, bioinformatics, digital construction, and microelectronics. Our analysis is driven by the question whether these disciplines develop a distinctive language use-both individually and collectively-over the given time period. The data set is the English Scientific Text Corpus (scitex), which includes texts from the 1970s/1980s and early 2000s. Our theoretical basis is register theory. In terms of methods, we combine corpus-based methods of feature extraction (various aggregated features [part-of-speech based], n-grams, lexico-grammatical patterns) and automatic text classification. The results of our research are directly relevant to the study of linguistic variation and languages for specific purposes (LSP) and have implications for various natural language processing (NLP) tasks, for example, authorship attribution, text mining, or training NLP tools.
  19. Ebrahimi, M.; ShafieiBavani, E.; Wong, R.; Chen, F.: Twitter user geolocation by filtering of highly mentioned users (2018) 0.00
    8.9242304E-4 = product of:
      0.005354538 = sum of:
        0.005354538 = weight(_text_:in in 4286) [ClassicSimilarity], result of:
          0.005354538 = score(doc=4286,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.09017298 = fieldWeight in 4286, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=4286)
      0.16666667 = coord(1/6)
    
    Abstract
    Geolocated social media data provide a powerful source of information about places and regional human behavior. Because only a small amount of social media data have been geolocation-annotated, inference techniques play a substantial role to increase the volume of annotated data. Conventional research in this area has been based on the text content of posts from a given user or the social network of the user, with some recent crossovers between the text- and network-based approaches. This paper proposes a novel approach to categorize highly-mentioned users (celebrities) into Local and Global types, and consequently use Local celebrities as location indicators. A label propagation algorithm is then used over the refined social network for geolocation inference. Finally, we propose a hybrid approach by merging a text-based method as a back-off strategy into our network-based approach. Empirical experiments over three standard Twitter benchmark data sets demonstrate that our approach outperforms state-of-the-art user geolocation methods.
  20. Kantardzic, M.: Data mining : concepts, models, methods, and algorithms (2003) 0.00
    8.413845E-4 = product of:
      0.005048307 = sum of:
        0.005048307 = weight(_text_:in in 2291) [ClassicSimilarity], result of:
          0.005048307 = score(doc=2291,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.08501591 = fieldWeight in 2291, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=2291)
      0.16666667 = coord(1/6)
    
    Abstract
    This book offers a comprehensive introduction to the exploding field of data mining. We are surrounded by data, numerical and otherwise, which must be analyzed and processed to convert it into information that informs, instructs, answers, or otherwise aids understanding and decision-making. Due to the ever-increasing complexity and size of today's data sets, a new term, data mining, was created to describe the indirect, automatic data analysis techniques that utilize more complex and sophisticated tools than those which analysts used in the past to do mere data analysis. "Data Mining: Concepts, Models, Methods, and Algorithms" discusses data mining principles and then describes representative state-of-the-art methods and algorithms originating from different disciplines such as statistics, machine learning, neural networks, fuzzy logic, and evolutionary computation. Detailed algorithms are provided with necessary explanations and illustrative examples. This text offers guidance: how and when to use a particular software tool (with their companion data sets) from among the hundreds offered when faced with a data set to mine. This allows analysts to create and perform their own data mining experiments using their knowledge of the methodologies and techniques provided. This book emphasizes the selection of appropriate methodologies and data analysis software, as well as parameter tuning. These critically important, qualitative decisions can only be made with the deeper understanding of parameter meaning and its role in the technique that is offered here. Data mining is an exploding field and this book offers much-needed guidance to selecting among the numerous analysis programs that are available.

Years

Languages

  • e 122
  • d 38

Types

  • a 130
  • m 21
  • el 17
  • s 16
  • x 2
  • p 1
  • More… Less…