Search (42 results, page 1 of 3)

  • × theme_ss:"Theorie verbaler Dokumentationssprachen"
  • × year_i:[2000 TO 2010}
  1. Dextre Clarke, S.G.: Thesaural relationships (2001) 0.03
    0.025627177 = product of:
      0.051254354 = sum of:
        0.013968632 = weight(_text_:in in 1149) [ClassicSimilarity], result of:
          0.013968632 = score(doc=1149,freq=10.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.23523843 = fieldWeight in 1149, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1149)
        0.01658486 = weight(_text_:und in 1149) [ClassicSimilarity], result of:
          0.01658486 = score(doc=1149,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.17141339 = fieldWeight in 1149, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1149)
        0.020700864 = product of:
          0.04140173 = sum of:
            0.04140173 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.04140173 = score(doc=1149,freq=2.0), product of:
                0.15286934 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043654136 = queryNorm
                0.2708308 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1149)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    A thesaurus in the controlled vocabulary environment is a tool designed to support effective infonnation retrieval (IR) by guiding indexers and searchers consistently to choose the same terms for expressing a given concept or combination of concepts. Terms in the thesaurus are linked by relationships of three well-known types: equivalence, hierarchical, and associative. The functions and properties of these three basic types and some subcategories are described, as well as some additional relationship types conunonly found in thesauri. Progressive automation of IR processes and the capability for simultaneous searching of vast networked resources are creating some pressures for change in the categorization and consistency of relationships.
    Date
    22. 9.2007 15:45:57
    Source
    Relationships in the organization of knowledge. Eds.: Bean, C.A. u. R. Green
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  2. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2008) 0.02
    0.015623803 = product of:
      0.04687141 = sum of:
        0.006246961 = weight(_text_:in in 2461) [ClassicSimilarity], result of:
          0.006246961 = score(doc=2461,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.10520181 = fieldWeight in 2461, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2461)
        0.040624447 = weight(_text_:und in 2461) [ClassicSimilarity], result of:
          0.040624447 = score(doc=2461,freq=12.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.41987535 = fieldWeight in 2461, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2461)
      0.33333334 = coord(2/6)
    
    Abstract
    Moderne Verfahren des Information Retrieval verlangen nach aussagekräftigen und detailliert relationierten Dokumentationssprachen. Der selektive Transfer einzelner Modellierungsstrategien aus dem Bereich semantischer Technologien für die Gestaltung und Relationierung bestehender Dokumentationssprachen wird diskutiert. Am Beispiel des Gegenstandsbereichs "Theater" der Schlagwortnormdatei wird ein hierarchisch strukturiertes Relationeninventar definiert, welches sowohl hinreichend allgemeine als auch zahlreiche spezifische Relationstypen enthält, welche eine detaillierte und damit funktionale Relationierung des Vokabulars ermöglichen. Die Relationierung des Gegenstandsbereichs wird als Ontologie im OWL-Format modelliert. Im Gegensatz zu anderen Ansätzen und Überlegungen zur Schaffung von Relationeninventaren entwickelt der vorgestellte Vorschlag das Relationeninventar aus der Begriffsmenge eines vorgegebenen Gegenstandsbereichs heraus. Das entwickelte Inventar wird als eine hierarchisch strukturierte Taxonomie gestaltet, was einen Zugewinn an Übersichtlichkeit und Funktionalität bringt.
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  3. Boteram, F.: Semantische Relationen in Dokumentationssprachen : vom Thesaurus zum semantischen Netz (2008) 0.02
    0.015187439 = product of:
      0.045562316 = sum of:
        0.005354538 = weight(_text_:in in 1837) [ClassicSimilarity], result of:
          0.005354538 = score(doc=1837,freq=2.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.09017298 = fieldWeight in 1837, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1837)
        0.040207777 = weight(_text_:und in 1837) [ClassicSimilarity], result of:
          0.040207777 = score(doc=1837,freq=16.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.41556883 = fieldWeight in 1837, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=1837)
      0.33333334 = coord(2/6)
    
    Abstract
    Moderne Verfahren des Information Retrieval verlangen nach aussagekräftigen und detailliert relationierten Dokumentationssprachen. Der selektive Transfer einzelner Modellierungsstrategien aus dem Bereich semantischer Technologien für die Gestaltung und Relationierung bestehender Dokumentationssprachen wird diskutiert. Am Beispiel des Gegenstandsbereichs "Theater" der Schlagwortnormdatei wird ein hierarchisch strukturiertes Relationeninventar definiert, welches sowohl hinreichend allgemeine als auch zahlreiche spezifische Relationstypen enthält, welche eine detaillierte und damit funktionale Relationierung des Vokabulars ermöglichen. Die Relationierung des Gegenstandsbereichs wird als Ontologie im OWL-Format modelliert. Im Gegensatz zu anderen Ansätzen und Überlegungen zur Schaffung von Relationeninventaren entwickelt der vorgestellte Vorschlag das Relationeninventar aus der Begriffsmenge eines vorgegebenen Gegenstandsbereichs heraus. Das entwickelte Inventar wird als eine hierarchisch strukturierte Taxonomie gestaltet, was einen Zugewinn an Übersichtlichkeit und Funktionalität bringt.
    Imprint
    Köln : Fachhochschule, Fakultät für Informations- und Kommunikationswissenschaften, Institut für Informationswissenschaft
    Series
    Kölner Arbeitspapiere zur Bibliotheks- und Informationswissenschaft; Bd. 54
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  4. Panzer, M.: Semantische Integration heterogener und unterschiedlichsprachiger Wissensorganisationssysteme : CrissCross und jenseits (2008) 0.01
    0.01374503 = product of:
      0.04123509 = sum of:
        0.007728611 = weight(_text_:in in 4335) [ClassicSimilarity], result of:
          0.007728611 = score(doc=4335,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1301535 = fieldWeight in 4335, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4335)
        0.03350648 = weight(_text_:und in 4335) [ClassicSimilarity], result of:
          0.03350648 = score(doc=4335,freq=16.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.34630734 = fieldWeight in 4335, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4335)
      0.33333334 = coord(2/6)
    
    Abstract
    Klassische bibliothekarische Indexierungswerkzeuge werden bis heute nur selten fürs Retrieval nutzbar gemacht; die Wichtigkeit, verschiedene dieser Vokabularien zu harmonisieren und integriert zu verwenden, ist noch immer keine Selbstverständlichkeit. Im Rahmen des DFG-Projektes "CrissCross" wird, ausgehend von der deutschen Ausgabe der Dewey-Dezimalklassifikation, eine Verknüpfung zwischen der DDC und der Schlagwortnormdatei (SWD) aufgebaut, um eine verbale Suche über klassifikatorisch erschlossene Bestände zu ermöglichen. Als Verbreiterung der Basis des verbalen Zugriffs wird außerdem das Mapping der amerikanischen LCSH und des französischen RAMEAU angestrebt. Nach einer kurzen Vorstellung von CrissCross und der Abgrenzung gegenüber ähnlichen Unterfangen werden Rückwirkungen semantischer Integration auf die verknüpften Vokabulare diskutiert. Wie müssen und können sich z.B. Thesauri verändern, wenn sie mit anderen (strukturheterologen) Systemen verknüpft sind? Dabei liegt ein Schwerpunkt der Analyse auf dem semantischen Verhältnis üblicher Mappingrelationen zu den verknüpften Begriffen (besonders im Hinblick auf Polysemie). Außerdem wird der Mehrwert fürs Retrieval auf der Basis solcher Wissensorganisationssysteme, z.B. durch automatisierten Zugriff über Ontologien, diskutiert.
    Series
    Fortschritte in der Wissensorganisation; Bd.10
    Source
    Kompatibilität, Medien und Ethik in der Wissensorganisation - Compatibility, Media and Ethics in Knowledge Organization: Proceedings der 10. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation Wien, 3.-5. Juli 2006 - Proceedings of the 10th Conference of the German Section of the International Society of Knowledge Organization Vienna, 3-5 July 2006. Ed.: H.P. Ohly, S. Netscher u. K. Mitgutsch
  5. Mazzocchi, F.; Plini, P.: Refining thesaurus relational structure : implications and opportunities (2008) 0.01
    0.010270989 = product of:
      0.030812964 = sum of:
        0.010709076 = weight(_text_:in in 5448) [ClassicSimilarity], result of:
          0.010709076 = score(doc=5448,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18034597 = fieldWeight in 5448, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5448)
        0.020103889 = weight(_text_:und in 5448) [ClassicSimilarity], result of:
          0.020103889 = score(doc=5448,freq=4.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.20778441 = fieldWeight in 5448, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=5448)
      0.33333334 = coord(2/6)
    
    Abstract
    In this paper the possibility to develop a richer relational structure for thesauri is explored and described. The development of a new environmental thesaurus - EARTh (Environmental Applications Reference Thesaurus) - is serving as a case study for exploring the refinement of thesaurus relational structure by specialising standard relationships into different subtypes. Together with benefits and opportunities, implications and possible challenges that an expanded set of thesaurus relations may cause are evaluated.
    Series
    Fortschritte in der Wissensorganisation; Bd.10
    Source
    Kompatibilität, Medien und Ethik in der Wissensorganisation - Compatibility, Media and Ethics in Knowledge Organization: Proceedings der 10. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation Wien, 3.-5. Juli 2006 - Proceedings of the 10th Conference of the German Section of the International Society of Knowledge Organization Vienna, 3-5 July 2006. Ed.: H.P. Ohly, S. Netscher u. K. Mitgutsch
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  6. Peters, I.; Weller. K.: Paradigmatic and syntagmatic relations in knowledge organization systems (2008) 0.01
    0.010184498 = product of:
      0.030553492 = sum of:
        0.013968632 = weight(_text_:in in 1593) [ClassicSimilarity], result of:
          0.013968632 = score(doc=1593,freq=10.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.23523843 = fieldWeight in 1593, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1593)
        0.01658486 = weight(_text_:und in 1593) [ClassicSimilarity], result of:
          0.01658486 = score(doc=1593,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.17141339 = fieldWeight in 1593, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1593)
      0.33333334 = coord(2/6)
    
    Abstract
    Classical knowledge representation methods have been successfully working for years with established - but in a way restricted and vague - relations such as synonymy, hierarchy (meronymy, hyponymy) and unspecified associations. Recent developments like ontologies and folksonomies show new forms of collaboration, indexing and knowledge representation and encourage the reconsideration of standard knowledge relationships for practical use. In a summarizing overview we show which relations are currently used in knowledge organization systems (controlled vocabularies, ontologies and folksonomies) and which relations are expressed explicitly or which may be inherently hidden in them.
    Source
    Information - Wissenschaft und Praxis. 59(2008) H.2, S.100-107
  7. Tudhope, D.; Binding, C.: Faceted thesauri (2008) 0.01
    0.009683581 = product of:
      0.029050741 = sum of:
        0.010096614 = weight(_text_:in in 1855) [ClassicSimilarity], result of:
          0.010096614 = score(doc=1855,freq=4.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.17003182 = fieldWeight in 1855, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=1855)
        0.018954126 = weight(_text_:und in 1855) [ClassicSimilarity], result of:
          0.018954126 = score(doc=1855,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.19590102 = fieldWeight in 1855, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0625 = fieldNorm(doc=1855)
      0.33333334 = coord(2/6)
    
    Abstract
    The basic elements of faceted thesauri are described, together with a review of their origins and some prominent examples. Their use in browsing and searching applications is discussed. Faceted thesauri are distinguished from faceted classification schemes, while acknowledging the close similarities. The paper concludes by comparing faceted thesauri and related knowledge organization systems to ontologies and discussing appropriate areas of use.
    Content
    Beitrag eines Themenheftes "Facets: a fruitful notion in many domains".
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  8. Schmitz-Esser, W.: Formalizing terminology-based knowledge for an ontology independently of a particular language (2008) 0.01
    0.008308224 = product of:
      0.024924671 = sum of:
        0.010709076 = weight(_text_:in in 1680) [ClassicSimilarity], result of:
          0.010709076 = score(doc=1680,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.18034597 = fieldWeight in 1680, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1680)
        0.014215595 = weight(_text_:und in 1680) [ClassicSimilarity], result of:
          0.014215595 = score(doc=1680,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.14692576 = fieldWeight in 1680, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=1680)
      0.33333334 = coord(2/6)
    
    Abstract
    Last word ontological thought and practice is exemplified on an axiomatic framework [a model for an Integrative Cross-Language Ontology (ICLO), cf. Poli, R., Schmitz-Esser, W., forthcoming 2007] that is highly general, based on natural language, multilingual, can be implemented as topic maps and may be openly enhanced by software available for particular languages. Basics of ontological modelling, conditions for construction and maintenance, and the most salient points in application are addressed, such as cross-language text mining and knowledge generation. The rationale is to open the eyes for the tremendous potential of terminology-based ontologies for principled Knowledge Organization and the interchange and reuse of formalized knowledge.
    Series
    Fortschritte in der Wissensorganisation; Bd.10
    Source
    Kompatibilität, Medien und Ethik in der Wissensorganisation - Compatibility, Media and Ethics in Knowledge Organization: Proceedings der 10. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation Wien, 3.-5. Juli 2006 - Proceedings of the 10th Conference of the German Section of the International Society of Knowledge Organization Vienna, 3-5 July 2006. Ed.: H.P. Ohly, S. Netscher u. K. Mitgutsch
  9. Tudhope, D.; Alani, H.; Jones, C.: Augmenting thesaurus relationships : possibilities for retrieval (2001) 0.01
    0.0081557 = product of:
      0.024467098 = sum of:
        0.012620768 = weight(_text_:in in 1520) [ClassicSimilarity], result of:
          0.012620768 = score(doc=1520,freq=16.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.21253976 = fieldWeight in 1520, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1520)
        0.01184633 = weight(_text_:und in 1520) [ClassicSimilarity], result of:
          0.01184633 = score(doc=1520,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.12243814 = fieldWeight in 1520, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1520)
      0.33333334 = coord(2/6)
    
    Abstract
    This paper discusses issues concerning the augmentation of thesaurus relationships, in light of new application possibilities for retrieval. We first discuss a case study that explored the retrieval potential of an augmented set of thesaurus relationships by specialising standard relationships into richer subtypes, in particular hierarchical geographical containment and the associative relationship. We then locate this work in a broader context by reviewing various attempts to build taxonomies of thesaurus relationships, and conclude by discussing the feasibility of hierarchically augmenting the core set of thesaurus relationships, particularly the associative relationship. We discuss the possibility of enriching the specification and semantics of Related Term (RT relationships), while maintaining compatibility with traditional thesauri via a limited hierarchical extension of the associative (and hierarchical) relationships. This would be facilitated by distinguishing the type of term from the (sub)type of relationship and explicitly specifying semantic categories for terms following a faceted approach. We first illustrate how hierarchical spatial relationships can be used to provide more flexible retrieval for queries incorporating place names in applications employing online gazetteers and geographical thesauri. We then employ a set of experimental scenarios to investigate key issues affecting use of the associative (RT) thesaurus relationships in semantic distance measures. Previous work has noted the potential of RTs in thesaurus search aids but also the problem of uncontrolled expansion of query term sets. Results presented in this paper suggest the potential for taking account of the hierarchical context of an RT link and specialisations of the RT relationship
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
    Konzeption und Anwendung des Prinzips Thesaurus
  10. Milstead, J.L.: Standards for relationships between subject indexing terms (2001) 0.01
    0.007829976 = product of:
      0.023489928 = sum of:
        0.009274333 = weight(_text_:in in 1148) [ClassicSimilarity], result of:
          0.009274333 = score(doc=1148,freq=6.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.1561842 = fieldWeight in 1148, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1148)
        0.014215595 = weight(_text_:und in 1148) [ClassicSimilarity], result of:
          0.014215595 = score(doc=1148,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.14692576 = fieldWeight in 1148, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.046875 = fieldNorm(doc=1148)
      0.33333334 = coord(2/6)
    
    Abstract
    Relationships between the terms in thesauri and Indexes are the subject of national and international standards. The standards for thesauri enumerate and provide criteria for three basic types of relationship: equivalence, hierarchical, and associative. Standards and guidelines for indexes draw an the thesaurus standards to provide less detailed guidance for showing relationships between the terms used in an Index. The international standard for multilingual thesauri adds recommendations for assuring equal treatment of the languages of a thesaurus. The present standards were developed when lookup and search were essentially manual, and the value of the kinds of relationships has never been determined. It is not clear whether users understand or can use the distinctions between kinds of relationships. On the other hand, sophisticated text analysis systems may be able both to assist with development of more powerful term relationship schemes and to use the relationships to improve retrieval.
    Source
    Relationships in the organization of knowledge. Eds.: Bean, C.A. u. R. Green
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  11. Dextre Clarke, S.G.; Gilchrist, A.; Will, L.: Revision and extension of thesaurus standards (2004) 0.01
    0.007449257 = product of:
      0.02234777 = sum of:
        0.0128707085 = weight(_text_:in in 2615) [ClassicSimilarity], result of:
          0.0128707085 = score(doc=2615,freq=26.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.2167489 = fieldWeight in 2615, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=2615)
        0.009477063 = weight(_text_:und in 2615) [ClassicSimilarity], result of:
          0.009477063 = score(doc=2615,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.09795051 = fieldWeight in 2615, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.03125 = fieldNorm(doc=2615)
      0.33333334 = coord(2/6)
    
    Abstract
    The current standards for monolingual and multilingual thesauri are long overdue for an update. This applies to the international standards ISO 2788 and ISO 5964, as well as the corresponding national standards in several countries and the American standard ANSI/NISO Z39.19. Work is now under way in the UK and in the USA to revise and extend the standards, with particular emphasis on interoperability needs in our world of vast electronic networks. Work in the UK is starting with the British Standards, in the hope of leading on to one international standard to serve all. Some of the issues still under discussion include the treatment of facet analysis, coverage of additional types of controlled vocabulary such as classification schemes, taxonomies and ontologies, and mapping from one vocabulary to another. 1. Are thesaurus standards still needed? Since the 1960s, even before the renowned Cranfield experiments (Cleverdon et al., 1966; Cleverdon, 1967) arguments have raged over the usefulness or otherwise of controlled vocabularies. The case has never been proved definitively one way or the other. At the same time, a recognition has become widespread that no one search method can answer all retrieval requirements. In today's environment of very large networks of resources, the skilled information professional uses a range of techniques. Among these, controlled vocabularies are valued alongside others. The first international standard for monolingual thesauri was issued in 1974. In those days, the main application was for postcoordinate indexing and retrieval from document collections or bibliographic databases. For many information professionals the only practicable alternative to a thesaurus was a classification scheme. And so the thesaurus developed a strong following. After computer systems with full text search capability became widely available, however, the arguments against controlled vocabularies gained more followers. The cost of building and maintaining a thesaurus or a classification scheme was a strong disincentive. Today's databases are typically immense compared with those three decades ago. Full text searching is taken for granted, not just in discrete databases but across all the resources in an intranet or even the Internet. But intranets have brought particular frustration as users discover that despite all the computer power, they cannot find items which they know to be present an the network. So the trend against controlled vocabularies is now being reversed, as many information professionals are turning to them for help. Standards to guide them are still in demand.
    Series
    Advances in knowledge organization; vol.9
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  12. Mazzocchi, F.; Tiberi, M.; De Santis, B.; Plini, P.: Relational semantics in thesauri : an overview and some remarks at theoretical and practical levels (2007) 0.01
    0.0069235205 = product of:
      0.020770561 = sum of:
        0.008924231 = weight(_text_:in in 1462) [ClassicSimilarity], result of:
          0.008924231 = score(doc=1462,freq=8.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.15028831 = fieldWeight in 1462, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1462)
        0.01184633 = weight(_text_:und in 1462) [ClassicSimilarity], result of:
          0.01184633 = score(doc=1462,freq=2.0), product of:
            0.09675359 = queryWeight, product of:
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.043654136 = queryNorm
            0.12243814 = fieldWeight in 1462, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.216367 = idf(docFreq=13101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1462)
      0.33333334 = coord(2/6)
    
    Abstract
    A thesaurus is a controlled vocabulary designed to allow for effective information retrieval. It con- sists of different kinds of semantic relationships, with the aim of guiding users to the choice of the most suitable index and search terms for expressing a certain concept. The relational semantics of a thesaurus deal with methods to connect terms with related meanings and arc intended to enhance information recall capabilities. In this paper, focused on hierarchical relations, different aspects of the relational semantics of thesauri, and among them the possibility of developing richer structures, are analyzed. Thesauri are viewed as semantic tools providing, for operational purposes, the representation of the meaning of the terms. The paper stresses how theories of semantics, holding different perspectives about the nature of meaning and how it is represented, affect the design of the relational semantics of thesauri. The need for tools capable of representing the complexity of knowledge and of the semantics of terms as it occurs in the literature of their respective subject fields is advocated. It is underlined how this would contribute to improving the retrieval of information. To achieve this goal, even though in a preliminary manner, we explore the possibility of setting against the framework of thesaurus design the notions of language games and hermeneutic horizon.
    Theme
    Konzeption und Anwendung des Prinzips Thesaurus
  13. Relationships in the organization of knowledge (2001) 0.00
    0.0027826177 = product of:
      0.016695706 = sum of:
        0.016695706 = weight(_text_:in in 1139) [ClassicSimilarity], result of:
          0.016695706 = score(doc=1139,freq=28.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.2811637 = fieldWeight in 1139, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1139)
      0.16666667 = coord(1/6)
    
    Abstract
    With fourteen contributions grouped in two sections, "Theoretical background" and "Systems", this work discusses the most common relationships used in the organization of recorded knowledge to facilitate information retrieval: the relationships between bibliographic entities, intra- and intertextual relationships, relevance relationships, and subject relationships in thesauri and other classificatory structures. The editors' goal is to "spur further interest, debate, research, and development".
    Content
    Enthält u.a. die Beiträge: GREEN, R.: Relationships in the organization of knowledge: an overview; TILLETT, B.: Bibliographic relationships; CLARKE, S.G.D.: Thesaural relationships; MILSTEAD, J.L.: Standards for relationships between subject indexing terms; HUDON, M.: Relationships in multilingual thesauri; BODENREIDER, O. u. C.A. BEAN: Relationships among knowledge structures: vocabulary integration within a subject domain; BEGHTOL, C.: Relationships in classificatory structure and meaning; BEAN, C.A. u. R. GREEN: Relevance relationships; EL-HOSHY, L.M.: Relationships in Library of Congress Subject Headings; MOLHOLT, P.: The Art and Architecture Thesaurus: controlling relationships through rules and structure; NELSON, S.J. u.a.: Relationships in Medical Subject Headings (MeSH); NEELAMEGHAN, A.: Lateral relationships in multicultural, mulrilingual databases in the spiritual and religous domains: the OM information service; SATIJA, M.P.: Relationships in Ranganathan's Colon classification; MITCHELL, J.S.: Relationships in the Dewey Decimal Classification System
    Footnote
    Rez. in: Knowledge organization 28(2001) no.4, S.208-210 (S. Betrand-Gastaldy)
  14. Green, R.: Relationships in the organization of knowledge : an overview (2001) 0.00
    0.0025503114 = product of:
      0.015301868 = sum of:
        0.015301868 = weight(_text_:in in 1142) [ClassicSimilarity], result of:
          0.015301868 = score(doc=1142,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.2576908 = fieldWeight in 1142, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1142)
      0.16666667 = coord(1/6)
    
    Abstract
    Relationships are specified by simultaneously identifying a semantic relationship and the set of participants involved in it, pairing each participant with its role in the relationship. Properties pertaining to the participant set and the nature of the relationship are explored. Relationships in the organization of knowledge are surveyed, encompassing relationships between units of recorded knowledge based an descriptions of those units; intratextual and intertextual relationships, including relationships based an text structure, citation relationships, and hypertext links; subject relationships in thesauri and other classificatory structures, including relationships for literature-based knowledge discovery; and relevance relationships.
    Source
    Relationships in the organization of knowledge. Eds.: Bean, C.A. u. R. Green
  15. Vickery, B.B.: Structure and function in retrieval languages (2006) 0.00
    0.0025241538 = product of:
      0.015144923 = sum of:
        0.015144923 = weight(_text_:in in 5584) [ClassicSimilarity], result of:
          0.015144923 = score(doc=5584,freq=16.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.25504774 = fieldWeight in 5584, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=5584)
      0.16666667 = coord(1/6)
    
    Abstract
    Purpose - The purpose of this paper is to summarize the varied structural characteristics which may be present in retrieval languages. Design/methodology/approach - The languages serve varied purposes in information systems, and a number of these are identified. The relations between structure and function are discussed and suggestions made as to the most suitable structures needed for various purposes. Findings - A quantitative approach has been developed: a simple measure is the number of separate terms in a retrieval language, but this has to be related to the scope of its subject field. Some ratio of terms to items in the field seems a more suitable measure of the average specificity of the terms. Other aspects can be quantified - for example, the average number of links in hierarchical chains, or the average number of cross-references in a thesaurus. Originality/value - All the approaches to the analysis of retrieval language reported in this paper are of continuing value. Some practical studies of computer information systems undertaken by Aslib Research Department have suggested a further approach.
  16. Broughton, V.: Language related problems in the construction of faceted terminologies and their automatic management (2008) 0.00
    0.0024665273 = product of:
      0.014799163 = sum of:
        0.014799163 = weight(_text_:in in 2497) [ClassicSimilarity], result of:
          0.014799163 = score(doc=2497,freq=22.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.24922498 = fieldWeight in 2497, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2497)
      0.16666667 = coord(1/6)
    
    Content
    The paper describes current work on the generation of a thesaurus format from the schedules of the Bliss Bibliographic Classification 2nd edition (BC2). The practical problems that occur in moving from a concept based approach to a terminological approach cluster around issues of vocabulary control that are not fully addressed in a systematic structure. These difficulties can be exacerbated within domains in the humanities because large numbers of culture specific terms may need to be accommodated in any thesaurus. The ways in which these problems can be resolved within the context of a semi-automated approach to the thesaurus generation have consequences for the management of classification data in the source vocabulary. The way in which the vocabulary is marked up for the purpose of machine manipulation is described, and some of the implications for editorial policy are discussed and examples given. The value of the classification notation as a language independent representation and mapping tool should not be sacrificed in such an exercise.
    Series
    Advances in knowledge organization; vol.11
    Source
    Culture and identity in knowledge organization: Proceedings of the Tenth International ISKO Conference 5-8 August 2008, Montreal, Canada. Ed. by Clément Arsenault and Joseph T. Tennis
  17. ¬The semantics of relationships : an interdisciplinary perspective (2002) 0.00
    0.0022310577 = product of:
      0.0133863455 = sum of:
        0.0133863455 = weight(_text_:in in 1430) [ClassicSimilarity], result of:
          0.0133863455 = score(doc=1430,freq=18.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22543246 = fieldWeight in 1430, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1430)
      0.16666667 = coord(1/6)
    
    Abstract
    Work on relationships takes place in many communities, including, among others, data modeling, knowledge representation, natural language processing, linguistics, and information retrieval. Unfortunately, continued disciplinary splintering and specialization keeps any one person from being familiar with the full expanse of that work. By including contributions form experts in a variety of disciplines and backgrounds, this volume demonstrates both the parallels that inform work on relationships across a number of fields and the singular emphases that have yet to be fully embraced, The volume is organized into 3 parts: (1) Types of relationships (2) Relationships in knowledge representation and reasoning (3) Applications of relationships
    Content
    Enthält die Beiträge: Pt.1: Types of relationships: CRUDE, D.A.: Hyponymy and its varieties; FELLBAUM, C.: On the semantics of troponymy; PRIBBENOW, S.: Meronymic relationships: from classical mereology to complex part-whole relations; KHOO, C. u.a.: The many facets of cause-effect relation - Pt.2: Relationships in knowledge representation and reasoning: GREEN, R.: Internally-structured conceptual models in cognitive semantics; HOVY, E.: Comparing sets of semantic relations in ontologies; GUARINO, N., C. WELTY: Identity and subsumption; JOUIS; C.: Logic of relationships - Pt.3: Applications of relationships: EVENS, M.: Thesaural relations in information retrieval; KHOO, C., S.H. MYAENG: Identifying semantic relations in text for information retrieval and information extraction; McCRAY, A.T., O. BODENREICHER: A conceptual framework for the biiomedical domain; HETZLER, B.: Visual analysis and exploration of relationships
    Footnote
    Mit ausführlicher Einleitung der Herausgeber zu den Themen: Types of relationships - Relationships in knowledge representation and reasoning - Applications of relationships
  18. Mai, J.-E.: Actors, domains, and constraints in the design and construction of controlled vocabularies (2008) 0.00
    0.0022310577 = product of:
      0.0133863455 = sum of:
        0.0133863455 = weight(_text_:in in 1921) [ClassicSimilarity], result of:
          0.0133863455 = score(doc=1921,freq=18.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22543246 = fieldWeight in 1921, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1921)
      0.16666667 = coord(1/6)
    
    Abstract
    Classification schemes, thesauri, taxonomies, and other controlled vocabularies play important roles in the organization and retrieval of information in many different environments. While the design and construction of controlled vocabularies have been prescribed at the technical level in great detail over the past decades, the methodological level has been somewhat neglected. However, classification research has in recent years focused on developing approaches to the analysis of users, domains, and activities that could produce requirements for the design of controlled vocabularies. Researchers have often argued that the design, construction, and use of controlled vocabularies need to be based on analyses and understandings of the contexts in which these controlled vocabularies function. While one would assume that the growing body of research on human information behavior might help guide the development of controlled vocabularies shed light on these contexts, unfortunately, much of the research in this area is descriptive in nature and of little use for systems design. This paper discusses these trends and outlines a holistic approach that demonstrates how the design of controlled vocabularies can be informed by investigations of people's interactions with information. This approach is based on the Cognitive Work Analysis framework and outlines several dimensions of human-information interactions. Application of this approach will result is a comprehensive understanding of the contexts in which the controlled vocabulary will function and which can be used for the development of for the development of controlled vocabularies.
  19. Marcoux, Y.; Rizkallah, E.: Knowledge organization in the light of intertextual semantics : a natural-language analysis of controlled vocabularies (2008) 0.00
    0.0021859813 = product of:
      0.013115887 = sum of:
        0.013115887 = weight(_text_:in in 2241) [ClassicSimilarity], result of:
          0.013115887 = score(doc=2241,freq=12.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.22087781 = fieldWeight in 2241, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=2241)
      0.16666667 = coord(1/6)
    
    Content
    Intertextual semantics is a semiotics-based approach to the design of communication artefacts primarily aimed at modeling XML structured documents. SKOS (Simple Knowledge Organization System) is a specification currently under development at the W3C that allows expressing various types of controlled vocabularies in XML. In this article, we show through an example how intertextual semantics could be applied to controlled vocabularies expressed in SKOS, and argue that it could facilitate the communication of meaning among the various persons who interact with a controlled vocabulary.
    Series
    Advances in knowledge organization; vol.11
    Source
    Culture and identity in knowledge organization: Proceedings of the Tenth International ISKO Conference 5-8 August 2008, Montreal, Canada. Ed. by Clément Arsenault and Joseph T. Tennis
  20. Khoo, S.G.; Na, J.-C.: Semantic relations in information science (2006) 0.00
    0.0021399553 = product of:
      0.012839732 = sum of:
        0.012839732 = weight(_text_:in in 1978) [ClassicSimilarity], result of:
          0.012839732 = score(doc=1978,freq=46.0), product of:
            0.059380736 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.043654136 = queryNorm
            0.21622722 = fieldWeight in 1978, product of:
              6.78233 = tf(freq=46.0), with freq of:
                46.0 = termFreq=46.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1978)
      0.16666667 = coord(1/6)
    
    Abstract
    This chapter examines the nature of semantic relations and their main applications in information science. The nature and types of semantic relations are discussed from the perspectives of linguistics and psychology. An overview of the semantic relations used in knowledge structures such as thesauri and ontologies is provided, as well as the main techniques used in the automatic extraction of semantic relations from text. The chapter then reviews the use of semantic relations in information extraction, information retrieval, question-answering, and automatic text summarization applications. Concepts and relations are the foundation of knowledge and thought. When we look at the world, we perceive not a mass of colors but objects to which we automatically assign category labels. Our perceptual system automatically segments the world into concepts and categories. Concepts are the building blocks of knowledge; relations act as the cement that links concepts into knowledge structures. We spend much of our lives identifying regular associations and relations between objects, events, and processes so that the world has an understandable structure and predictability. Our lives and work depend on the accuracy and richness of this knowledge structure and its web of relations. Relations are needed for reasoning and inferencing. Chaffin and Herrmann (1988b, p. 290) noted that "relations between ideas have long been viewed as basic to thought, language, comprehension, and memory." Aristotle's Metaphysics (Aristotle, 1961; McKeon, expounded on several types of relations. The majority of the 30 entries in a section of the Metaphysics known today as the Philosophical Lexicon referred to relations and attributes, including cause, part-whole, same and opposite, quality (i.e., attribute) and kind-of, and defined different types of each relation. Hume (1955) pointed out that there is a connection between successive ideas in our minds, even in our dreams, and that the introduction of an idea in our mind automatically recalls an associated idea. He argued that all the objects of human reasoning are divided into relations of ideas and matters of fact and that factual reasoning is founded on the cause-effect relation. His Treatise of Human Nature identified seven kinds of relations: resemblance, identity, relations of time and place, proportion in quantity or number, degrees in quality, contrariety, and causation. Mill (1974, pp. 989-1004) discoursed on several types of relations, claiming that all things are either feelings, substances, or attributes, and that attributes can be a quality (which belongs to one object) or a relation to other objects.
    Linguists in the structuralist tradition (e.g., Lyons, 1977; Saussure, 1959) have asserted that concepts cannot be defined on their own but only in relation to other concepts. Semantic relations appear to reflect a logical structure in the fundamental nature of thought (Caplan & Herrmann, 1993). Green, Bean, and Myaeng (2002) noted that semantic relations play a critical role in how we represent knowledge psychologically, linguistically, and computationally, and that many systems of knowledge representation start with a basic distinction between entities and relations. Green (2001, p. 3) said that "relationships are involved as we combine simple entities to form more complex entities, as we compare entities, as we group entities, as one entity performs a process on another entity, and so forth. Indeed, many things that we might initially regard as basic and elemental are revealed upon further examination to involve internal structure, or in other words, internal relationships." Concepts and relations are often expressed in language and text. Language is used not just for communicating concepts and relations, but also for representing, storing, and reasoning with concepts and relations. We shall examine the nature of semantic relations from a linguistic and psychological perspective, with an emphasis on relations expressed in text. The usefulness of semantic relations in information science, especially in ontology construction, information extraction, information retrieval, question-answering, and text summarization is discussed. Research and development in information science have focused on concepts and terms, but the focus will increasingly shift to the identification, processing, and management of relations to achieve greater effectiveness and refinement in information science techniques. Previous chapters in ARIST on natural language processing (Chowdhury, 2003), text mining (Trybula, 1999), information retrieval and the philosophy of language (Blair, 2003), and query expansion (Efthimiadis, 1996) provide a background for this discussion, as semantic relations are an important part of these applications.